Cogrowth and spectral gap of generic groups
- [1] UMPA - CNRS, École normale supérieure de Lyon, 46 allée d'Italie, 69364 Lyon Cedex 07 (France)
Annales de l’institut Fourier (2005)
- Volume: 55, Issue: 1, page 289-317
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topOllivier, Yann. "Cogrowth and spectral gap of generic groups." Annales de l’institut Fourier 55.1 (2005): 289-317. <http://eudml.org/doc/116189>.
@article{Ollivier2005,
abstract = {The cogrowth exponent of a group controls the random walk spectrum. We prove that for a
generic group (in the density model) this exponent is arbitrarily close to that of a free
group. Moreover, this exponent is stable under random quotients of torsion-free
hyperbolic groups.},
affiliation = {UMPA - CNRS, École normale supérieure de Lyon, 46 allée d'Italie, 69364 Lyon Cedex 07 (France)},
author = {Ollivier, Yann},
journal = {Annales de l’institut Fourier},
keywords = {Random groups; cogrowth; hyperbolic groups; random walk on groups; random groups; random walks on groups; cogrowth exponents; free groups},
language = {eng},
number = {1},
pages = {289-317},
publisher = {Association des Annales de l'Institut Fourier},
title = {Cogrowth and spectral gap of generic groups},
url = {http://eudml.org/doc/116189},
volume = {55},
year = {2005},
}
TY - JOUR
AU - Ollivier, Yann
TI - Cogrowth and spectral gap of generic groups
JO - Annales de l’institut Fourier
PY - 2005
PB - Association des Annales de l'Institut Fourier
VL - 55
IS - 1
SP - 289
EP - 317
AB - The cogrowth exponent of a group controls the random walk spectrum. We prove that for a
generic group (in the density model) this exponent is arbitrarily close to that of a free
group. Moreover, this exponent is stable under random quotients of torsion-free
hyperbolic groups.
LA - eng
KW - Random groups; cogrowth; hyperbolic groups; random walk on groups; random groups; random walks on groups; cogrowth exponents; free groups
UR - http://eudml.org/doc/116189
ER -
References
top- J.M. Cohen, Cogrowth and Amenability of Discrete Groups, J. Funct. Anal. 48 (1982), 301-309 Zbl0499.20023MR678175
- C. Champetier, Cocroissance des groupes à petite simplification, Bull. London Math. Soc. 25 (1993), 438-444 Zbl0829.20046MR1233406
- C. Champetier, Propriétés statistiques des groupes de présentation finie, J. Adv. Math. 116 (1995), 197-262 Zbl0847.20030MR1363765
- C. Champetier, L'espace des groupes de type fini, Topology 39 (2000), 657-680 Zbl0959.20041MR1760424
- R.I. Grigorchuk, P. de la Harpe, On problems related to growth, entropy, and spectrum in group theory, Dynam. Control Systems 3 (1997), 51-89 Zbl0949.20033MR1436550
- É. Ghys, Groupes aléatoires, 916 (2003)
- R.I. Grigorchuk, Symmetrical Random Walks on Discrete Groups, 6 (1980), Dekker Zbl0475.60007
- M. Gromov, Hyperbolic Groups, (1987), 75-265, Springer Zbl0634.20015
- M. Gromov, Asymptotic Invariants of Infinite Groups, (1993), Cambridge University Press, Cambridge Zbl0841.20039MR1253544
- M. Gromov, Random Walk in Random Groups, Geom. Funct. Anal. 13 (2003), 73-146 Zbl1122.20021MR1978492
- N. Higson, V. Lafforgue, G. Skandalis, Counterexamples to the Baum-Connes conjecture, Geom. Funct. Anal. 12 (2002), 330-354 Zbl1014.46043MR1911663
- H. Kesten, Symmetric Random Walks on Groups, Trans. Amer. Math. Soc. 92 (1959), 336-354 Zbl0092.33503MR109367
- R.C. Lyndon, P.E. Schupp, Combinatorial Group Theory, 89 (1977) Zbl0368.20023MR577064
- Y. Ollivier, Sharp phase transition theorems for hyperbolicity of random groups, Geom. Funct. Anal. 14 (2004), 595-679 Zbl1064.20045MR2100673
- A.Yu. Ol’shanskiĭ, Almost Every Group is Hyperbolic, Int. J. Algebra Comput. 2 (1992), 1-17 Zbl0779.20016MR1167524
- F. Paulin, Sur la théorie élémentaire des groupes libres, Séminaire Bourbaki 922 (2003)
- H. Short, et al., (1991), World Scientific
- W. Woess, Random Walks on Infinite Graphs and Groups, 138 (2000) Zbl0951.60002MR1743100
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.