On the elementary theory of free groups
Séminaire Bourbaki (2002-2003)
- Volume: 45, page 363-402
- ISSN: 0303-1179
Access Full Article
topAbstract
topHow to cite
topPaulin, Frédéric. "Sur la théorie élémentaire des groupes libres." Séminaire Bourbaki 45 (2002-2003): 363-402. <http://eudml.org/doc/252138>.
@article{Paulin2002-2003,
abstract = {Sela a annoncé une solution complète d’un problème de Tarski, qui demanda vers 1945 quels sont les groupes de type fini qui ont la même théorie élémentaire qu’un groupe libre. Nous discuterons des travaux de Remeslennikov, Kharlampovich-Myasnikov, Sela, Champetier-Guirardel et autres sur la structure des groupes limites (les groupes de type fini qui sont “limites”de groupes libres, ou encore, qui ont la même théorie universelle qu’un groupe libre). Nous indiquerons quelques outils utilisés par Sela (dont des techniques de Rips, Rips-Sela, Bestvina-Feighn et autres sur les actions de groupes sur les arbres).},
author = {Paulin, Frédéric},
journal = {Séminaire Bourbaki},
keywords = {first order formula; elementary theory; Tarski’s problem; free group; limit group; groups action on trees},
language = {fre},
pages = {363-402},
publisher = {Association des amis de Nicolas Bourbaki, Société mathématique de France},
title = {Sur la théorie élémentaire des groupes libres},
url = {http://eudml.org/doc/252138},
volume = {45},
year = {2002-2003},
}
TY - JOUR
AU - Paulin, Frédéric
TI - Sur la théorie élémentaire des groupes libres
JO - Séminaire Bourbaki
PY - 2002-2003
PB - Association des amis de Nicolas Bourbaki, Société mathématique de France
VL - 45
SP - 363
EP - 402
AB - Sela a annoncé une solution complète d’un problème de Tarski, qui demanda vers 1945 quels sont les groupes de type fini qui ont la même théorie élémentaire qu’un groupe libre. Nous discuterons des travaux de Remeslennikov, Kharlampovich-Myasnikov, Sela, Champetier-Guirardel et autres sur la structure des groupes limites (les groupes de type fini qui sont “limites”de groupes libres, ou encore, qui ont la même théorie universelle qu’un groupe libre). Nous indiquerons quelques outils utilisés par Sela (dont des techniques de Rips, Rips-Sela, Bestvina-Feighn et autres sur les actions de groupes sur les arbres).
LA - fre
KW - first order formula; elementary theory; Tarski’s problem; free group; limit group; groups action on trees
UR - http://eudml.org/doc/252138
ER -
References
top- [Bas] H. Bass – “Covering theory for graphs of groups”, J. Pure Appl. Math.89 (1993), p. 3–47. Zbl0805.57001MR1239551
- [Bau1] G. Baumslag – “On generalized free products”, Math. Z.78 (1962), p. 423–438. Zbl0104.24402MR140562
- [Bau] —, Topics in combinatorial group theory, Lect. in Math., Birkhäuser, 1993. Zbl0797.20001MR1243634
- [BMR] G. Baumslag, A. Myasnikov & V.N. Remeslennikov – “Algebraic geometry over groups I. Algebraic sets and ideal theory”, J. Algebra219 (1999), p. 16–79. Zbl0938.20020MR1707663
- [BF1] M. Bestvina & M. Feighn – “Bounding the complexity of simplicial group actions on trees”, Invent. Math.103 (1991), p. 449–469. Zbl0724.20019MR1091614
- [BF2] —, “A combination theorem for negatively curved groups”, J. Differential Geom. 35 (1992), p. 85–101, Addendum, 43 (1996), p. 783-788. Zbl0862.57027MR1152226
- [BF3] —, “Stable actions of groups on real trees”, Invent. Math.121 (1995), p. 287–321. Zbl0837.20047MR1346208
- [BF4] —, “Notes on Sela’s work : limit groups and Makanin-Razborov diagrams”, prépublication, Univ. Utah, oct. 2003.
- [Bou] N. Bourbaki – Topologie générale, chap. 1 à 4, Hermann, Paris, 1971. Zbl0249.54001MR358652
- [Bow] B. Bowditch – “Cut points and canonical splittings of hyperbolic groups”, Acta Math.180 (1998), p. 145–186. Zbl0911.57001MR1638764
- [Cham] C. Champetier – “L’espace des groupes de type fini”, Topology39 (2000), p. 657–680. Zbl0959.20041MR1760424
- [CG] C. Champetier & V. Guirardel – “Limit groups as limits of free groups : compactifying the set of free groups”, à paraître dans Israel J. Math. Zbl1103.20026MR2151593
- [CK] C.C. Chang & H.J. Keisler – Model theory, Studia Logica, vol. 73, North-Holand, 1973. Zbl0276.02032MR409165
- [Chat] Z. Chatzidakis – “Limit groups, viewed by a logician”, Notes d’exposés, http://www.logique.jussieu.fr/~zoe, 2001.
- [Chi] I. Chiswell – Introduction to -trees, World Scientific, 2001. Zbl1004.20014MR1851337
- [Dun] M.J. Dunwoody – “Groups acting on protrees”, J. London Math. Soc. (2) 56 (1997), p. 125–136. Zbl0918.20011MR1462830
- [DS] M.J. Dunwoody & M.E. Sageev – “JSJ-splittings for finitely presented groups over slender groups”, Invent. Math.135 (1999), p. 25–44. Zbl0939.20047MR1664694
- [For] M. Forester – “On uniqueness of JSJ decompositions of finitely generated groups”, Comm. Math. Helv78 (2003), p. 740–751. Zbl1040.20032MR2016693
- [FP] K. Fujiwara & P. Papasoglu – “JSJ-splittings and complexes of groups”, prépublication Orsay, 1998.
- [GLP] D. Gaboriau, G. Levitt & F. Paulin – “Pseudogroups of isometries of and Rips’ theorem on free actions on -trees”, Israel J. Math.87 (1994), p. 403–428. Zbl0824.57001MR1286836
- [Ghy1] É. Ghys – “Les groupes hyperboliques”, in Sém. Bourbaki (1989/90), Astérisque, vol. 189-190, Société Mathématique de France, 1990, exp. no 722, p. 203–238. Zbl0744.20036MR1099877
- [Ghy2] —, “Les groupes aléatoires [d’après Misha Gromov,...]”, in Sém. Bourbaki (2002/03), Astérisque, Société Mathématique de France, 2004, exp. no 916, ce volume. Zbl1134.20306
- [Gri] R.I. Grigorchuk – “Degrees of growth of finitely generated groups and the theory of invariant means”, Izv. Akad. Nauk SSSR Ser. Mat.48 (1984), p. 939–985. Zbl0583.20023MR764305
- [Gro] S. Gross – PhD Thesis, The Hebrew University, 2001.
- [Gui] V. Guirardel – “Limit groups and groups acting on -trees”, prépublication Univ. Toulouse, 2003.
- [HV] P. de la Harpe & A. Valette – La propriété de Kazhdan pour les groupes localement compacts, Astérisque, vol. 175, Société Mathématique de France, 1989. Zbl0759.22001
- [Hat] A. Hatcher – Algebraic topology, Cambridge Univ. Press, 2002, http://www.math.cornell.edu/~hatcher. Zbl1044.55001MR1867354
- [HS] H. Hendriks & A. Shastri – “A splitting theorem for surfaces”, in Topological structures, II, Proc. Symp. Topo. Geom. (Amsterdam, 1978), Part 1, Math. Centre Tracts, vol. 115, Math. Centrum, Amsterdam, 1979, p. 117–121. Zbl0431.57002MR565831
- [JS] W.H. Jaco & P.B. Shalen – Seifert fibered spaces in -manifolds, Mem. Amer. Math. Soc., vol. 220, American Mathematical Society, 1979. Zbl0415.57005MR539411
- [Joh] K. Johannson – Homotopy equivalences of -manifolds with boundaries, Lect. Notes in Math., vol. 761, Springer Verlag, 1979. Zbl0412.57007MR551744
- [KM0] O. Kharlampovich & A. Myasnikov – “Tarski’s problem about the elementary theory of free groups has a positive solution”, Electron. Res. Announc. Amer. Math. Soc.4 (1998), p. 101–108. Zbl0923.20016MR1662319
- [KM1] —, “Irreducible affine varieties over a free group. I. Irreducibility of quadratic equations and Nullstellensatz”, J. Algebra200 (1998), p. 472–516. Zbl0904.20016MR1610660
- [KM2] —, “Irreducible affine varieties over a free group. II. Systems in triangular quasi-quadratic form and description of residually free groups”, J. Algebra200 (1998), p. 517–570. Zbl0904.20017MR1610664
- [KM3a] —, “Implicit function theorem over free groups”, prépublication, révisée 2003, http://www.math.mcgill.ca/~olga, 1999.
- [KM3b] —, “Algebraic geometry over free groups : lifting solutions into generic points”, in Group theory : algorithms, language, logic (A. Borovik, ’ed.), Contemp. Math., American Mathematical Society, à paraître. Zbl1093.20014
- [KM4a] —, “Equations over fully residually free groups”, prépublication, révisée 2003, http://www.math.mcgill.ca/~olga, 1999.
- [KM4b] —, “Effective JSJ decompositions”, in Group theory : algorithms, language, logic (A. Borovik, ’ed.), Contemp. Math., American Mathematical Society, à paraître.
- [KM5] —, “Elementary theory of free nonabelian groups”, prépublication, révisée 2003, http://www.math.mcgill.ca/~olga, 1999.
- [Lev] G. Levitt – “Automorphisms of hyperbolic groups and graphs of groups”, prépublication Univ. Toulouse, Oct. 2002. Zbl1107.20030
- [Lyn1] R.C. Lyndon – “The equation in free groups”, Michigan Math. J.6 (1959), p. 89–95. Zbl0084.02803MR103218
- [Lyn2] —, “Equations in free groups”, Trans. Amer. Math. Soc.96 (1960), p. 445–457. Zbl0108.02301MR151503
- [LS] R.C. Lyndon & P.E. Schupp – Combinatorial group theory, Ergeb. Math. Grenz., vol. 89, Springer Verlag, 1977. Zbl0368.20023MR577064
- [Mak1] G.S. Makanin – “Equations in a free group”, Math. USSR-Izv. 21 (1983), p. 449–469. Zbl0527.20018MR682490
- [Mak2] —, “Decidability of the universal and positive theories of a free group”, Math. USSR-Izv. 25 (1985), p. 75–88. Zbl0578.20001
- [Mer] Yu.I. Merzlyakov – “Positive formula on free groups”, Algebra i Logika5 (1966), p. 25–42. Zbl0216.29402MR222149
- [Pau1] F. Paulin – “Topologie de Gromov équivariante, structures hyperboliques et arbres réels”, Invent. Math.94 (1988), p. 53–80. Zbl0673.57034MR958589
- [Pau2] —, “Actions de groupes sur les arbres”, in Sém. Bourbaki (1995/96), Astérisque, vol. 241, Société Mathématique de France, 1997, exp. no 808, p. 97–137. Zbl0984.20015MR1472536
- [Raz] A.A. Razborov – “On systems of equations in a free group”, Math. USSR-Izv. 25 (1985), p. 115–162. Zbl0579.20019MR755958
- [Rem] V.N. Remeslennikov – “-free groups”, Siberian Math. J.30 (1989), p. 998–1001. Zbl0724.20025MR1043446
- [RS] E. Rips & Z. Sela – “Cyclic splittings of finitely presented groups and the canonical JSJ decomposition”, Ann. of Math.146 (1997), p. 53–104. Zbl0910.57002MR1469317
- [Sac] G.S. Sacerdote – “Elementary properties of free groups”, Trans. Amer. Math. Soc.178 (1973), p. 127–138. Zbl0268.02037MR320146
- [Sel1] Z. Sela – “Diophantine geometry over groups I : Makanin-Razborov diagrams”, Publ. Math. Inst. Hautes Études Sci.93 (2001), p. 31–105. Zbl1018.20034MR1863735
- [Sel2] —, “Diophantine geometry over groups II : completions, closures and formal solutions”, Israel J. Math.134 (2003), p. 173–254. Zbl1028.20028MR1972179
- [Sel3] —, “Diophantine geometry over groups III : rigid and solid solutions”, prépublication, 49 pages, http://www.ma.huji.ac.il/~zlil, 2001 à paraître dans Israel J. Math.
- [Sel4] —, “Diophantine geometry over groups IV : an iterative procedure for validation of a sentence”, prépublication, 106 pages, http://www.ma.huji.ac.il/~zlil, Juil. 2001 à paraître dans Israel J. Math. Zbl1088.20017
- [Sel5] —, “Diophantine geometry over groups V : quantifier elimination”, prépublication, 223 pages, http://www.ma.huji.ac.il/~zlil, Oct. 2001 à paraître, partie I dans Israel J. Math., partie II dans Geom. Funct. Anal.
- [Sel6] —, “Diophantine geometry over groups VI : the elementary theory of a free group”, prépublication, 14 pages, http://www.ma.huji.ac.il/~zlil, Oct. 2001 à paraître dans Geom. Funct. Anal. Zbl1118.20035
- [Sel7] —, “Diophantine geometry over groups VII : the elementary theory of a hyperbolic group”, prépublication, 65 pages, http://www.ma.huji.ac.il/~zlil, Mars 2002.
- [Ser] J.-P. Serre – Arbres, amalgames, SL, Astérisque, vol. 46, Société Mathématique de France, 1983. Zbl0369.20013MR476875
- [Tar] A. Tarski – “Some notions and methods on the borderline of algebra and metamathematics”, in Proc. I.C.M. (Cambridge, 1950), vol. 1, American Mathematical Society, 1952, p. 705–720. Zbl0049.00702MR45068
- [ZVC] H. Zieschang, E. Vogt & H. Coldewey – Surfaces and planar discontinuous groups, Lect. Notes in Math., vol. 835, Springer Verlag, 1980. Zbl0438.57001MR606743
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.