A remark on Whittaker functions on SL ( n , )

Taku Ishii[1]

  • [1] Tokyo Institute of Technology, department of mathematics, 2-12-1 Oh-okayama, Meguro-ku, Tokyo 152-8551 (JAPAN)

Annales de l’institut Fourier (2005)

  • Volume: 55, Issue: 2, page 483-492
  • ISSN: 0373-0956

Abstract

top
We prove the recursive integral formula of class one M -Whittaker functions on SL ( n , ) conjectured and verified in case of n = 3 , 4 by Stade.

How to cite

top

Ishii, Taku. "A remark on Whittaker functions on SL$(n,{\mathbb {R}})$." Annales de l’institut Fourier 55.2 (2005): 483-492. <http://eudml.org/doc/116197>.

@article{Ishii2005,
abstract = {We prove the recursive integral formula of class one $M$-Whittaker functions on SL$(n,\{\mathbb \{R\}\})$ conjectured and verified in case of $ n =3,4 $ by Stade.},
affiliation = {Tokyo Institute of Technology, department of mathematics, 2-12-1 Oh-okayama, Meguro-ku, Tokyo 152-8551 (JAPAN)},
author = {Ishii, Taku},
journal = {Annales de l’institut Fourier},
keywords = {Whittaker functions; automorphic forms; Whittaker function; automorphic form},
language = {eng},
number = {2},
pages = {483-492},
publisher = {Association des Annales de l'Institut Fourier},
title = {A remark on Whittaker functions on SL$(n,\{\mathbb \{R\}\})$},
url = {http://eudml.org/doc/116197},
volume = {55},
year = {2005},
}

TY - JOUR
AU - Ishii, Taku
TI - A remark on Whittaker functions on SL$(n,{\mathbb {R}})$
JO - Annales de l’institut Fourier
PY - 2005
PB - Association des Annales de l'Institut Fourier
VL - 55
IS - 2
SP - 483
EP - 492
AB - We prove the recursive integral formula of class one $M$-Whittaker functions on SL$(n,{\mathbb {R}})$ conjectured and verified in case of $ n =3,4 $ by Stade.
LA - eng
KW - Whittaker functions; automorphic forms; Whittaker function; automorphic form
UR - http://eudml.org/doc/116197
ER -

References

top
  1. W. N. Bailey, Generalized Hypergeometric Series, (1935) Zbl0011.02303
  2. D. Bump, Automorphic Forms on G L ( 3 , ) , Lect. Notes in Math. 1083 (1984) Zbl0543.22005MR765698
  3. M. Hashizume, Whittaker functions on semisimple Lie groups, Hiroshima Math. J. 12 (1982), 259-293 Zbl0524.43005MR665496
  4. H. Jacquet, Fonctions de Whittaker associées aux groupes de Chevalley, Bull. Soc. Math. France 95 (1967), 243-309 Zbl0155.05901MR271275
  5. B. Kostant, On Whittaker vectors and representation theory, Invent. Math. 48 (1978), 101-184 Zbl0405.22013MR507800
  6. R. Miatello, N. Wallach, Automorphic Forms Constructed from Whittaker Vectors, J. of Funct. Anal. 86 (1989), 411-487 Zbl0692.10029MR1021143
  7. J. Shalika, The multiplicity one theorem for G L ( n ) , Ann. of Math. 100 (1974), 171-193 Zbl0316.12010MR348047
  8. E. Stade, Poincaré Series For G L ( 3 , ) -Whittaker Functions, Duke Math. J. 3 (1989), 695-729 Zbl0699.10041MR1016442
  9. E. Stade, On Explicit Integral Formulas For G L ( n , ) -Whittaker Functions, Duke Math. J. 60 (1990), 313-362 Zbl0731.11027MR1047756
  10. E. Stade, G L ( 4 , ) -Whittaker functions and 4 F 3 ( 1 ) hypergeometric series, Trans. Amer. Math. Soc. 336 (1993), 253-264 Zbl0786.11027MR1102226
  11. E. Stade, The reciprocal of the beta function and G L ( n , ) Whittaker functions, Ann. Inst. Fourier, Grenoble 44 (1994), 93-108 Zbl0801.33001MR1262881

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.