Topological invariants of analytic sets associated with Noetherian families
- [1] Uniwersytet Gdanski, Instytut Matematyki, ul. Wita Stwosza 57, 80-952 Gdansk (POLAND)
Annales de l’institut Fourier (2005)
- Volume: 55, Issue: 2, page 549-571
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topNowel, Aleksandra. "Topological invariants of analytic sets associated with Noetherian families." Annales de l’institut Fourier 55.2 (2005): 549-571. <http://eudml.org/doc/116200>.
@article{Nowel2005,
abstract = {Let $\Omega \subset \{\mathbb \{R\}\}^n$ be a compact semianalytic set and let $\{\mathcal \{F\}\}$ be a
collection of real analytic functions defined in some neighbourhood of $\Omega $. Let
$Y_\{\omega \}$ be the germ at $\omega $ of the set $\bigcap _\{f\in \{\mathcal \{F\}\}\}f^\{-1\}(0)$. Then
there exist analytic functions $v _1,v _2,\ldots , v _s$ defined in a neighbourhood of
$\Omega $ such that $\{1\over 2\} \chi (\{\rm lk\} (\omega ,Y_\{\omega \}))=\sum _\{i=1\}^\{s\} \{\rm sgn\} v_i(\{\omega \})$, for all $\{\omega \}\in \Omega $.},
affiliation = {Uniwersytet Gdanski, Instytut Matematyki, ul. Wita Stwosza 57, 80-952 Gdansk (POLAND)},
author = {Nowel, Aleksandra},
journal = {Annales de l’institut Fourier},
keywords = {germs of semianalytic sets; Noetherian families; (sum of signs of) analytic functions; $\Omega $-Noetherian algebra; sums of signs of analytic functions; -Noetherian algebra},
language = {eng},
number = {2},
pages = {549-571},
publisher = {Association des Annales de l'Institut Fourier},
title = {Topological invariants of analytic sets associated with Noetherian families},
url = {http://eudml.org/doc/116200},
volume = {55},
year = {2005},
}
TY - JOUR
AU - Nowel, Aleksandra
TI - Topological invariants of analytic sets associated with Noetherian families
JO - Annales de l’institut Fourier
PY - 2005
PB - Association des Annales de l'Institut Fourier
VL - 55
IS - 2
SP - 549
EP - 571
AB - Let $\Omega \subset {\mathbb {R}}^n$ be a compact semianalytic set and let ${\mathcal {F}}$ be a
collection of real analytic functions defined in some neighbourhood of $\Omega $. Let
$Y_{\omega }$ be the germ at $\omega $ of the set $\bigcap _{f\in {\mathcal {F}}}f^{-1}(0)$. Then
there exist analytic functions $v _1,v _2,\ldots , v _s$ defined in a neighbourhood of
$\Omega $ such that ${1\over 2} \chi ({\rm lk} (\omega ,Y_{\omega }))=\sum _{i=1}^{s} {\rm sgn} v_i({\omega })$, for all ${\omega }\in \Omega $.
LA - eng
KW - germs of semianalytic sets; Noetherian families; (sum of signs of) analytic functions; $\Omega $-Noetherian algebra; sums of signs of analytic functions; -Noetherian algebra
UR - http://eudml.org/doc/116200
ER -
References
top- J. Bochnak, M. Coste, M.-F. Roy, Real algebraic geometry, (1998), Springer-Verlag, Berlin Zbl0912.14023MR1659509
- I. Bonnard, F. Pieroni, Constructible functions on 2-dimensional analytic manifolds Zbl1057.14072MR2083960
- M. Coste, K. Kurdyka, On the link of a stratum in a real algebraic set, Topology 31 (1992), 323-336 Zbl0787.14038MR1167174
- M. Coste, K. Kurdyka, Le discriminant d'un morphisme de variétés algébriques réelles, Topology 37 (1998), 393-399 Zbl0942.14031MR1489210
- A. El Khadiri, J.-C. Tougeron, Familles noethériennes de modules sur et applications, Bull. Sci. Math. 120 (1996), 253-292 Zbl0858.13009MR1399844
- A. El Khadiri, J.-C. Tougeron, Familles noethériennes de modules sur et applications, (1984) MR1399844
- J. Frisch, Points de platitude d'un morphisme d'espaces analytiques complexes, Invent. Math. 4 (1967), 118-138 Zbl0167.06803MR222336
- S. Lojasiewicz, Introduction to complex analytic geometry, (1991), Birkhauser Verlag, Basel--Boston--Berlin Zbl0747.32001MR1131081
- C. McCrory, A. Parusinski, Algebraically constructible functions, Ann. Scient. École Norm. Sup. 30 (1997), 527-552 Zbl0913.14018MR1456244
- C. McCrory, A. Parusinski, Topology of real algebraic sets of dimension 4: necessary conditions, Topology 39 (2000), 495-523 Zbl0965.14031MR1746905
- J. Mather, Stratifications and mappings. Dynamical systems, (1973), 195-232, Academic Press, New York Zbl0286.58003
- A. Parusinski, Z. Szafraniec, Algebraically constructible functions and signs of polynomials, Manuscripta Math. 93 (1997), 443-456 Zbl0913.14019MR1465890
- A. Parusinski, Z. Szafraniec, On the Euler characteristic of fibres of real polynomial maps, 44 (1996), 175-182, Polish Acad. Sci., Warsaw Zbl0915.14032
- Z. Szafraniec, On the Euler characteristic of analytic and algebraic sets, Topology 25 (1986), 411-414 Zbl0611.32007MR862428
- Z. Szafraniec, On the Euler characteristic of complex algebraic varieties, Math. Ann. 280 (1988), 177-183 Zbl0616.14016MR929533
- B. Teissier, Varietes polaires II. Multiplicités polaires, sections planes et conditions de Whitney, 169 (1980), Centre de Mathématiques de l'École Polytechnique, France, "Labo Zbl0585.14008
- J.-C. Tougeron, Idéaux de fonctions différentiables, (1972), Springer--Verlag, Berlin--Heidelberg--New York Zbl0251.58001MR440598
- H. Whitney, Tangents to an analytic variety, Ann. of Math. 81 (1965), 96-549 Zbl0152.27701MR192520
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.