Topological invariants of analytic sets associated with Noetherian families

Aleksandra Nowel[1]

  • [1] Uniwersytet Gdanski, Instytut Matematyki, ul. Wita Stwosza 57, 80-952 Gdansk (POLAND)

Annales de l’institut Fourier (2005)

  • Volume: 55, Issue: 2, page 549-571
  • ISSN: 0373-0956

Abstract

top
Let Ω n be a compact semianalytic set and let be a collection of real analytic functions defined in some neighbourhood of Ω . Let Y ω be the germ at ω of the set f f - 1 ( 0 ) . Then there exist analytic functions v 1 , v 2 , ... , v s defined in a neighbourhood of Ω such that 1 2 χ ( lk ( ω , Y ω ) ) = i = 1 s sgn v i ( ω ) , for all ω Ω .

How to cite

top

Nowel, Aleksandra. "Topological invariants of analytic sets associated with Noetherian families." Annales de l’institut Fourier 55.2 (2005): 549-571. <http://eudml.org/doc/116200>.

@article{Nowel2005,
abstract = {Let $\Omega \subset \{\mathbb \{R\}\}^n$ be a compact semianalytic set and let $\{\mathcal \{F\}\}$ be a collection of real analytic functions defined in some neighbourhood of $\Omega $. Let $Y_\{\omega \}$ be the germ at $\omega $ of the set $\bigcap _\{f\in \{\mathcal \{F\}\}\}f^\{-1\}(0)$. Then there exist analytic functions $v _1,v _2,\ldots , v _s$ defined in a neighbourhood of $\Omega $ such that $\{1\over 2\} \chi (\{\rm lk\} (\omega ,Y_\{\omega \}))=\sum _\{i=1\}^\{s\} \{\rm sgn\} v_i(\{\omega \})$, for all $\{\omega \}\in \Omega $.},
affiliation = {Uniwersytet Gdanski, Instytut Matematyki, ul. Wita Stwosza 57, 80-952 Gdansk (POLAND)},
author = {Nowel, Aleksandra},
journal = {Annales de l’institut Fourier},
keywords = {germs of semianalytic sets; Noetherian families; (sum of signs of) analytic functions; $\Omega $-Noetherian algebra; sums of signs of analytic functions; -Noetherian algebra},
language = {eng},
number = {2},
pages = {549-571},
publisher = {Association des Annales de l'Institut Fourier},
title = {Topological invariants of analytic sets associated with Noetherian families},
url = {http://eudml.org/doc/116200},
volume = {55},
year = {2005},
}

TY - JOUR
AU - Nowel, Aleksandra
TI - Topological invariants of analytic sets associated with Noetherian families
JO - Annales de l’institut Fourier
PY - 2005
PB - Association des Annales de l'Institut Fourier
VL - 55
IS - 2
SP - 549
EP - 571
AB - Let $\Omega \subset {\mathbb {R}}^n$ be a compact semianalytic set and let ${\mathcal {F}}$ be a collection of real analytic functions defined in some neighbourhood of $\Omega $. Let $Y_{\omega }$ be the germ at $\omega $ of the set $\bigcap _{f\in {\mathcal {F}}}f^{-1}(0)$. Then there exist analytic functions $v _1,v _2,\ldots , v _s$ defined in a neighbourhood of $\Omega $ such that ${1\over 2} \chi ({\rm lk} (\omega ,Y_{\omega }))=\sum _{i=1}^{s} {\rm sgn} v_i({\omega })$, for all ${\omega }\in \Omega $.
LA - eng
KW - germs of semianalytic sets; Noetherian families; (sum of signs of) analytic functions; $\Omega $-Noetherian algebra; sums of signs of analytic functions; -Noetherian algebra
UR - http://eudml.org/doc/116200
ER -

References

top
  1. J. Bochnak, M. Coste, M.-F. Roy, Real algebraic geometry, (1998), Springer-Verlag, Berlin Zbl0912.14023MR1659509
  2. I. Bonnard, F. Pieroni, Constructible functions on 2-dimensional analytic manifolds Zbl1057.14072MR2083960
  3. M. Coste, K. Kurdyka, On the link of a stratum in a real algebraic set, Topology 31 (1992), 323-336 Zbl0787.14038MR1167174
  4. M. Coste, K. Kurdyka, Le discriminant d'un morphisme de variétés algébriques réelles, Topology 37 (1998), 393-399 Zbl0942.14031MR1489210
  5. A. El Khadiri, J.-C. Tougeron, Familles noethériennes de modules sur k [ [ x ] ] et applications, Bull. Sci. Math. 120 (1996), 253-292 Zbl0858.13009MR1399844
  6. A. El Khadiri, J.-C. Tougeron, Familles noethériennes de modules sur k [ [ x ] ] et applications, (1984) MR1399844
  7. J. Frisch, Points de platitude d'un morphisme d'espaces analytiques complexes, Invent. Math. 4 (1967), 118-138 Zbl0167.06803MR222336
  8. S. Lojasiewicz, Introduction to complex analytic geometry, (1991), Birkhauser Verlag, Basel--Boston--Berlin Zbl0747.32001MR1131081
  9. C. McCrory, A. Parusinski, Algebraically constructible functions, Ann. Scient. École Norm. Sup. 30 (1997), 527-552 Zbl0913.14018MR1456244
  10. C. McCrory, A. Parusinski, Topology of real algebraic sets of dimension 4: necessary conditions, Topology 39 (2000), 495-523 Zbl0965.14031MR1746905
  11. J. Mather, Stratifications and mappings. Dynamical systems, (1973), 195-232, Academic Press, New York Zbl0286.58003
  12. A. Parusinski, Z. Szafraniec, Algebraically constructible functions and signs of polynomials, Manuscripta Math. 93 (1997), 443-456 Zbl0913.14019MR1465890
  13. A. Parusinski, Z. Szafraniec, On the Euler characteristic of fibres of real polynomial maps, 44 (1996), 175-182, Polish Acad. Sci., Warsaw Zbl0915.14032
  14. Z. Szafraniec, On the Euler characteristic of analytic and algebraic sets, Topology 25 (1986), 411-414 Zbl0611.32007MR862428
  15. Z. Szafraniec, On the Euler characteristic of complex algebraic varieties, Math. Ann. 280 (1988), 177-183 Zbl0616.14016MR929533
  16. B. Teissier, Varietes polaires II. Multiplicités polaires, sections planes et conditions de Whitney, 169 (1980), Centre de Mathématiques de l'École Polytechnique, France, "Labo Zbl0585.14008
  17. J.-C. Tougeron, Idéaux de fonctions différentiables, (1972), Springer--Verlag, Berlin--Heidelberg--New York Zbl0251.58001MR440598
  18. H. Whitney, Tangents to an analytic variety, Ann. of Math. 81 (1965), 96-549 Zbl0152.27701MR192520

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.