Sums of commutators in ideals and modules of type II factors
Kenneth J. Dykema[1]; Nigel J. Kalton
- [1] Texas A&M University, department of mathematics, College Station TX 77843-3368 (USA), University of Missouri, department of mathematics, Columbia MO 65211 (USA)
Annales de l’institut Fourier (2005)
- Volume: 55, Issue: 3, page 931-971
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topJ. Dykema, Kenneth, and J. Kalton, Nigel. "Sums of commutators in ideals and modules of type II factors." Annales de l’institut Fourier 55.3 (2005): 931-971. <http://eudml.org/doc/116212>.
@article{J2005,
abstract = {Let $\{\mathcal \{M\}\}$ be a factor of type II$_\infty $ or II$_1$ having separable predual and let
$\overline\{\mathcal \{M\}\}$ be the algebra of affiliated $\tau $-measurable operators. We
characterize the commutator space $[\{\mathcal \{I\}\},\{\mathcal \{J\}\}]$ for sub-$(\{\mathcal \{M\}\},\{\mathcal \{M\}\})$-
bimodules $\{\mathcal \{I\}\}$ and $\{\mathcal \{J\}\}$ of $\overline\{\mathcal \{M\}\}$.},
affiliation = {Texas A&M University, department of mathematics, College Station TX 77843-3368 (USA), University of Missouri, department of mathematics, Columbia MO 65211 (USA)},
author = {J. Dykema, Kenneth, J. Kalton, Nigel},
journal = {Annales de l’institut Fourier},
keywords = {commutators; type II factors; Brown measure; noncommutative function spaces},
language = {eng},
number = {3},
pages = {931-971},
publisher = {Association des Annales de l'Institut Fourier},
title = {Sums of commutators in ideals and modules of type II factors},
url = {http://eudml.org/doc/116212},
volume = {55},
year = {2005},
}
TY - JOUR
AU - J. Dykema, Kenneth
AU - J. Kalton, Nigel
TI - Sums of commutators in ideals and modules of type II factors
JO - Annales de l’institut Fourier
PY - 2005
PB - Association des Annales de l'Institut Fourier
VL - 55
IS - 3
SP - 931
EP - 971
AB - Let ${\mathcal {M}}$ be a factor of type II$_\infty $ or II$_1$ having separable predual and let
$\overline{\mathcal {M}}$ be the algebra of affiliated $\tau $-measurable operators. We
characterize the commutator space $[{\mathcal {I}},{\mathcal {J}}]$ for sub-$({\mathcal {M}},{\mathcal {M}})$-
bimodules ${\mathcal {I}}$ and ${\mathcal {J}}$ of $\overline{\mathcal {M}}$.
LA - eng
KW - commutators; type II factors; Brown measure; noncommutative function spaces
UR - http://eudml.org/doc/116212
ER -
References
top- J. H. Anderson, Commutators in ideals of trace class operators II, Indiana Univ. Math. J. 35 (1986), 373-378 Zbl0602.47033MR833400
- L. G. Brown, Lidskii's theorem in the type II case, Proc. U. S. Japan Seminar, Kyoto 1983 123 (1986), 1-35 Zbl0646.46058
- J. W. Calkin, Two-sided ideals and congruences in the ring of bounded operators in Hilbert space, Ann. of Math. 42 (1941), 839-873 Zbl0063.00692MR5790
- C. Cecchini, On two definitions of measurable and locally measurable operators, Bullettino U. M. I 15-A (1978), 526-534 Zbl0392.46042MR521097
- P. G. Dodds, T. K. Dodds, B. de Pagter, Noncommutative Banach function spaces, Math. Z. 201 (1989), 583-597 Zbl0653.46061MR1004176
- P. G. Dodds, B. de Pagter, E. M. Semenov, F. A. Sukochev, Symmetric functionals and singular traces, Positivity 2 (1998), 45-75 Zbl0915.46021MR1655756
- K. J. Dykema, T. Figiel, G. Weiss, M. Wodzicki, The commutator structure of operator ideals, Adv. Math. 185 (2004), 1-79 Zbl1103.47054MR2058779
- K. J. Dykema, N. J. Kalton, Spectral characterization of sums of commutators II, J. reine angew. Math. 504 (1998), 127-137 Zbl0919.47023MR1656763
- T. Fack, Sur la notion de valeur caractéristique, J. Operator Theory 7 (1982), 307-333 Zbl0493.46052MR658616
- T. Fack, Sums of commutators in non-commutative Banach function spaces, J. Funct. Anal. 207 (2004), 358-398 Zbl1062.46053MR2032994
- T. Fack, P. de la Harpe, Sommes de commutateurs dans les algègres de von Neumann finies continues, Ann. Inst. Fourier, Grenoble 30 (1980), 49-73 Zbl0425.46046MR597017
- T. Fack, H. Kosaki, Generalized -numbers of -measurable operators, Pacific J. Math. 123 (1986), 269-300 Zbl0617.46063MR840845
- T. Figiel, N. J. Kalton, Symmetric linear functionals on function spaces, Function spaces, interpolation theory and related topics (2002), 311-332, de Gruyter Zbl1032.46043
- B. Fuglede, R. Kadison, Determinant theory in finite factors, Ann. Math. 55 (1952), 520-530 Zbl0046.33604MR52696
- A. Grothendieck, Séminaire Bourbaki, 1954/55, 113 (1959), Paris
- D. Guido, T. Isola, Singular traces on semifinite von Neumann algebras, J. Funct. Anal. 134 (1995), 451-485 Zbl0861.46036MR1363808
- H. Halpern, Commutators in properly infinite von Neumann algebras, Trans. Amer. Math. Soc. 139 (1969), 55-73 Zbl0176.11403MR251546
- V. Kaftal, G. Weiss, Traces, ideals, and arithmetic means, Proc. Nat. Acad. Sci. 99 (2002), 7356-7360 Zbl1015.47016MR1907839
- N. J. Kalton, Trace-class operators and commutators, J. Funct. Anal. 86 (1989), 41-74 Zbl0684.47017MR1013933
- N. J. Kalton, Spectral characterization of sums of commutators I, J. reine angew. Math. 504 (1998), 115-125 Zbl0919.47022MR1656767
- N. J. Kalton, Traces and characteristic determinants, Rend. Circ. Math. Palermo 56 (1998), 59-68 Zbl0940.47020MR1710822
- F. J. Murray, J. von Neumann, On rings of operators, Ann. of Math. 37 (1936), 116-229 Zbl0014.16101MR1503275
- E. Nelson, Notes on non-commutative integration, J. Funct. Anal. 15 (1974), 103-116 Zbl0292.46030MR355628
- V. I. Ovcinnikov, The -numbers of measurable operators, (Russian), Funkcional. Anal. i Prilozen 4 (1970), 78-85 Zbl0219.47029MR271763
- C. Pearcy, D. Topping, On commutators in ideals of compact operators, Michigan J. Math. 18 (1971), 247-252 Zbl0226.46066MR284853
- I. E. Segal, A non-commutative extension of abstract integration, Ann. of Math. 57 (1953), 401-457 Zbl0051.34201MR54864
- A. Ströh, G. P. West, -compact operators affiliated to a semifinite von Neumann algebra, Proc. R. Ir. Acad. 93A (1993), 73-86 Zbl0790.46049MR1241841
- G. Weiss, Commutators of Hilbert-Schmidt operators II, Integral Equations Operator Theory, 3 (1980), 574-600 Zbl0455.47025MR595752
- G. P. West, Ideals of -measurable operators, Quaestiones Math. 18 (1995), 333-344 Zbl0837.46051MR1354116
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.