Sums of commutators in ideals and modules of type II factors

Kenneth J. Dykema[1]; Nigel J. Kalton

  • [1] Texas A&M University, department of mathematics, College Station TX 77843-3368 (USA), University of Missouri, department of mathematics, Columbia MO 65211 (USA)

Annales de l’institut Fourier (2005)

  • Volume: 55, Issue: 3, page 931-971
  • ISSN: 0373-0956

Abstract

top
Let be a factor of type II or II 1 having separable predual and let ¯ be the algebra of affiliated τ -measurable operators. We characterize the commutator space [ , 𝒥 ] for sub- ( , ) - bimodules and 𝒥 of ¯ .

How to cite

top

J. Dykema, Kenneth, and J. Kalton, Nigel. "Sums of commutators in ideals and modules of type II factors." Annales de l’institut Fourier 55.3 (2005): 931-971. <http://eudml.org/doc/116212>.

@article{J2005,
abstract = {Let $\{\mathcal \{M\}\}$ be a factor of type II$_\infty $ or II$_1$ having separable predual and let $\overline\{\mathcal \{M\}\}$ be the algebra of affiliated $\tau $-measurable operators. We characterize the commutator space $[\{\mathcal \{I\}\},\{\mathcal \{J\}\}]$ for sub-$(\{\mathcal \{M\}\},\{\mathcal \{M\}\})$- bimodules $\{\mathcal \{I\}\}$ and $\{\mathcal \{J\}\}$ of $\overline\{\mathcal \{M\}\}$.},
affiliation = {Texas A&M University, department of mathematics, College Station TX 77843-3368 (USA), University of Missouri, department of mathematics, Columbia MO 65211 (USA)},
author = {J. Dykema, Kenneth, J. Kalton, Nigel},
journal = {Annales de l’institut Fourier},
keywords = {commutators; type II factors; Brown measure; noncommutative function spaces},
language = {eng},
number = {3},
pages = {931-971},
publisher = {Association des Annales de l'Institut Fourier},
title = {Sums of commutators in ideals and modules of type II factors},
url = {http://eudml.org/doc/116212},
volume = {55},
year = {2005},
}

TY - JOUR
AU - J. Dykema, Kenneth
AU - J. Kalton, Nigel
TI - Sums of commutators in ideals and modules of type II factors
JO - Annales de l’institut Fourier
PY - 2005
PB - Association des Annales de l'Institut Fourier
VL - 55
IS - 3
SP - 931
EP - 971
AB - Let ${\mathcal {M}}$ be a factor of type II$_\infty $ or II$_1$ having separable predual and let $\overline{\mathcal {M}}$ be the algebra of affiliated $\tau $-measurable operators. We characterize the commutator space $[{\mathcal {I}},{\mathcal {J}}]$ for sub-$({\mathcal {M}},{\mathcal {M}})$- bimodules ${\mathcal {I}}$ and ${\mathcal {J}}$ of $\overline{\mathcal {M}}$.
LA - eng
KW - commutators; type II factors; Brown measure; noncommutative function spaces
UR - http://eudml.org/doc/116212
ER -

References

top
  1. J. H. Anderson, Commutators in ideals of trace class operators II, Indiana Univ. Math. J. 35 (1986), 373-378 Zbl0602.47033MR833400
  2. L. G. Brown, Lidskii's theorem in the type II case, Proc. U. S. Japan Seminar, Kyoto 1983 123 (1986), 1-35 Zbl0646.46058
  3. J. W. Calkin, Two-sided ideals and congruences in the ring of bounded operators in Hilbert space, Ann. of Math. 42 (1941), 839-873 Zbl0063.00692MR5790
  4. C. Cecchini, On two definitions of measurable and locally measurable operators, Bullettino U. M. I 15-A (1978), 526-534 Zbl0392.46042MR521097
  5. P. G. Dodds, T. K. Dodds, B. de Pagter, Noncommutative Banach function spaces, Math. Z. 201 (1989), 583-597 Zbl0653.46061MR1004176
  6. P. G. Dodds, B. de Pagter, E. M. Semenov, F. A. Sukochev, Symmetric functionals and singular traces, Positivity 2 (1998), 45-75 Zbl0915.46021MR1655756
  7. K. J. Dykema, T. Figiel, G. Weiss, M. Wodzicki, The commutator structure of operator ideals, Adv. Math. 185 (2004), 1-79 Zbl1103.47054MR2058779
  8. K. J. Dykema, N. J. Kalton, Spectral characterization of sums of commutators II, J. reine angew. Math. 504 (1998), 127-137 Zbl0919.47023MR1656763
  9. T. Fack, Sur la notion de valeur caractéristique, J. Operator Theory 7 (1982), 307-333 Zbl0493.46052MR658616
  10. T. Fack, Sums of commutators in non-commutative Banach function spaces, J. Funct. Anal. 207 (2004), 358-398 Zbl1062.46053MR2032994
  11. T. Fack, P. de la Harpe, Sommes de commutateurs dans les algègres de von Neumann finies continues, Ann. Inst. Fourier, Grenoble 30 (1980), 49-73 Zbl0425.46046MR597017
  12. T. Fack, H. Kosaki, Generalized s -numbers of τ -measurable operators, Pacific J. Math. 123 (1986), 269-300 Zbl0617.46063MR840845
  13. T. Figiel, N. J. Kalton, Symmetric linear functionals on function spaces, Function spaces, interpolation theory and related topics (2002), 311-332, de Gruyter Zbl1032.46043
  14. B. Fuglede, R. Kadison, Determinant theory in finite factors, Ann. Math. 55 (1952), 520-530 Zbl0046.33604MR52696
  15. A. Grothendieck, Séminaire Bourbaki, 1954/55, 113 (1959), Paris 
  16. D. Guido, T. Isola, Singular traces on semifinite von Neumann algebras, J. Funct. Anal. 134 (1995), 451-485 Zbl0861.46036MR1363808
  17. H. Halpern, Commutators in properly infinite von Neumann algebras, Trans. Amer. Math. Soc. 139 (1969), 55-73 Zbl0176.11403MR251546
  18. V. Kaftal, G. Weiss, Traces, ideals, and arithmetic means, Proc. Nat. Acad. Sci. 99 (2002), 7356-7360 Zbl1015.47016MR1907839
  19. N. J. Kalton, Trace-class operators and commutators, J. Funct. Anal. 86 (1989), 41-74 Zbl0684.47017MR1013933
  20. N. J. Kalton, Spectral characterization of sums of commutators I, J. reine angew. Math. 504 (1998), 115-125 Zbl0919.47022MR1656767
  21. N. J. Kalton, Traces and characteristic determinants, Rend. Circ. Math. Palermo 56 (1998), 59-68 Zbl0940.47020MR1710822
  22. F. J. Murray, J. von Neumann, On rings of operators, Ann. of Math. 37 (1936), 116-229 Zbl0014.16101MR1503275
  23. E. Nelson, Notes on non-commutative integration, J. Funct. Anal. 15 (1974), 103-116 Zbl0292.46030MR355628
  24. V. I. Ovcinnikov, The s -numbers of measurable operators, (Russian), Funkcional. Anal. i Prilozen 4 (1970), 78-85 Zbl0219.47029MR271763
  25. C. Pearcy, D. Topping, On commutators in ideals of compact operators, Michigan J. Math. 18 (1971), 247-252 Zbl0226.46066MR284853
  26. I. E. Segal, A non-commutative extension of abstract integration, Ann. of Math. 57 (1953), 401-457 Zbl0051.34201MR54864
  27. A. Ströh, G. P. West, τ -compact operators affiliated to a semifinite von Neumann algebra, Proc. R. Ir. Acad. 93A (1993), 73-86 Zbl0790.46049MR1241841
  28. G. Weiss, Commutators of Hilbert-Schmidt operators II, Integral Equations Operator Theory, 3 (1980), 574-600 Zbl0455.47025MR595752
  29. G. P. West, Ideals of τ -measurable operators, Quaestiones Math. 18 (1995), 333-344 Zbl0837.46051MR1354116

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.