Local monomialization of transcendental extensions
- [1] University of Missouri, department of mathematics, Columbia, MO 65211 (USA)
Annales de l’institut Fourier (2005)
- Volume: 55, Issue: 5, page 1517-1586
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topDale CUTKOSKY, Steven. "Local monomialization of transcendental extensions." Annales de l’institut Fourier 55.5 (2005): 1517-1586. <http://eudml.org/doc/116225>.
@article{DaleCUTKOSKY2005,
abstract = {Suppose that $R\subset S$ are regular local rings which are essentially of finite type
over a field $k$ of characteristic zero. If $V$ is a valuation ring of the quotient field
$K$ of $S$ which dominates $S$, then we show that there are sequences of monoidal
transforms (blow ups of regular primes) $R\rightarrow R_1$ and $S\rightarrow S_1$ along
$V$ such that $R_1\rightarrow S_1$ is a monomial mapping. It follows that a morphism of
nonsingular varieties can be made to be a monomial mapping along a valuation, after blow
ups of nonsingular subvarieties.},
affiliation = {University of Missouri, department of mathematics, Columbia, MO 65211 (USA)},
author = {Dale CUTKOSKY, Steven},
journal = {Annales de l’institut Fourier},
keywords = {Monomialization; monoidal transform; valuation ring; Morphism; resolution of singularities; local uniformization theorem; toroidalization},
language = {eng},
number = {5},
pages = {1517-1586},
publisher = {Association des Annales de l'Institut Fourier},
title = {Local monomialization of transcendental extensions},
url = {http://eudml.org/doc/116225},
volume = {55},
year = {2005},
}
TY - JOUR
AU - Dale CUTKOSKY, Steven
TI - Local monomialization of transcendental extensions
JO - Annales de l’institut Fourier
PY - 2005
PB - Association des Annales de l'Institut Fourier
VL - 55
IS - 5
SP - 1517
EP - 1586
AB - Suppose that $R\subset S$ are regular local rings which are essentially of finite type
over a field $k$ of characteristic zero. If $V$ is a valuation ring of the quotient field
$K$ of $S$ which dominates $S$, then we show that there are sequences of monoidal
transforms (blow ups of regular primes) $R\rightarrow R_1$ and $S\rightarrow S_1$ along
$V$ such that $R_1\rightarrow S_1$ is a monomial mapping. It follows that a morphism of
nonsingular varieties can be made to be a monomial mapping along a valuation, after blow
ups of nonsingular subvarieties.
LA - eng
KW - Monomialization; monoidal transform; valuation ring; Morphism; resolution of singularities; local uniformization theorem; toroidalization
UR - http://eudml.org/doc/116225
ER -
References
top- S. Abhyankar, Local uniformization on algebraic surfaces over ground fields of characteristic , Annals of Math. 63 (1956), 491-526 Zbl0108.16803MR78017
- S. Abhyankar, On the valuations centered in a local domain, Amer. J. Math. 78 (1956), 321-348 Zbl0074.26301MR82477
- S. Abhyankar, Simultaneous resolution for algebraic surfaces, Amer. J. Math. 78 (1956), 761-790 Zbl0073.37902MR82722
- S. Abhyankar, Ramification theoretic methods in algebraic geometry, Princeton University Press (1959) Zbl0101.38201MR105416
- S. Abhyankar, Resolution of singularities of embedded algebraic surfaces, second edition, (1998), Springer Zbl0914.14006MR1617523
- S. Abhyankar, Resolution of singularities and modular Galois theory, Bulletin of the AMS 38 (2001), 131-171 Zbl0999.12003MR1816069
- S. Abhyankar, On the ramification of algebraic functions, American J. Math. 77 (1955), 575-592 Zbl0064.27501MR71851
- S. Abhyankar, Algebraic Geometry for Scientists and Engineers, American Mathematical Society (1990) Zbl0709.14001MR1075991
- D. Abramovich, K. Karu, K. Matsuki, J. Wlodarczyk, Torification and factorization of birational maps, Journal of the American Mathematical Society 15 (2002), 351-572 Zbl1032.14003MR1896232
- E. Bierstone, P. Milman, Canonical desingularization in characteristic zero by blowing up the maximum strata of a local invariant, Invent. Math. 128 (1997), 207-302 Zbl0896.14006MR1440306
- C. Christensen, Strong domination, weak factorization or three dimensional regular local local rings, Journal of the Indian Math. Soc. 45 (1981), 21-47 Zbl0643.13007MR828858
- V. Cossart, Polyèdre caractéristique d'une singularité, (1987) Zbl0333.32008
- S. D. Cutkosky, Local Factorization of Birational Maps, Advances in Math. 132 (1997), 167-315 Zbl0934.14006MR1491444
- S. D. Cutkosky, Local Monomialization and Factorization of Morphisms, Astérisque 260 (1999) Zbl0941.14001MR1734239
- S. D. Cutkosky, Simultaneous resolution of singularities, Proc. American Math. Soc. 128 (2000), 1905-1910 Zbl0974.14010MR1646312
- S. D. Cutkosky, Ramification of valuations and singularities Zbl1029.13003MR1986148
- S. D. Cutkosky, Monomialization of morphisms from 3-folds to surfaces, (2002), Springer-Verlag Zbl1057.14009MR1927974
- S. D. Cutkosky, J. Herzog, A. Reguera, Poincaré series of resolutions of surface singularities, Transactions AMS 356 (2003), 1833-1874 Zbl1076.14006MR2031043
- S. D. Cutkosky, O. Kascheyeva, Monomialization of strongly prepared morphisms from nonsingular -folds to surfaces, J. Algebra 275 (2004), 275-320 Zbl1057.14008MR2047449
- S. D. Cutkosky, O. Piltant, Monomial resolutions of morphisms of algebraic surfaces, Communications in Algebra 28 (2000), 5935-5959 Zbl1003.14004MR1808613
- S. D. Cutkosky, O. Piltant, Ramification of valuations, Advances in Mathematics 183 (2004), 1-79 Zbl1105.14015MR2038546
- S. D. Cutkosky, L. Ghezzi, Completions of valuation rings Zbl1216.13013
- S. D. Cutkosky, H. Srinivasan, Factorizations of matrices and birational maps Zbl1132.14013
- W. Fulton, Introduction to Toric Varieties, Princeton University Press (1993) Zbl0813.14039MR1234037
- W. Heinzer, C. Rotthaus, S. Wiegand, Approximating discrete valuation rings by regular local rings, a remark on local uniformization, Proc. Amer. Math. Soc. 129 (2001), 37-43 Zbl0962.13017MR1694346
- H. Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero, Annals of Math. 79 (1964), 109-326 Zbl0122.38603MR199184
- H. Hironaka, Desingularization of excellent surfaces, (1967), Bowdoin College, Brunswick, Maine
- K. Karu, Local strong factorization of birational maps, J. Alg. Geom. 14 (2005), 165-175 Zbl1077.14017MR2092130
- F.V. Kuhlmann, Valuation theoretic and model theoretic aspects of local uniformization, (2000), Springer-Verlag Zbl1046.14001MR1748629
- J. Lipman, Desingularization of two-dimensional schemes, Ann. Math. 107 (1978), 151-207 Zbl0349.14004MR491722
- H. Matsumura, Commutative Ring Theory, 8 (1986), Cambridge University Press, Cambridge Zbl0603.13001MR879273
- TT. Moh, Quasi-Canonical uniformization of hypersurface singularities of characteristic zero, Comm. Algebra 20 (1992), 3207-3249 Zbl0784.14008MR1186705
- M. Spivakovsky, Valuations in function fields of surfaces, Amer. J. Math. 112 (1990), 107-156 Zbl0716.13003MR1037606
- B. Teissier, Valuations, Deformations and Toric Geometry, Valuation Theory and its Applications II 33 (1990), 441-491 Zbl1061.14016
- O. Villamayor, S. Encinas, A course on constructive desingularization and equivariance, (2000), Springer-Verlag Zbl0969.14007
- O. Zariski, The reduction of the singularities of an algebraic surface, Annals of Math. 40 (1939), 639-689 Zbl0021.25303MR159
- O. Zariski, Local uniformization of algebraic varieties, Annals of Math. 41 (1940), 852-896 Zbl0025.21601MR2864
- O. Zariski, Reduction of the singularities of algebraic three dimensional varieties, Annals of Math. 45 (1944), 472-542 Zbl0063.08361MR11006
- O. Zariski, P. Samuel, Commutative Algebra II, (1960), Van Nostrand, Princeton Zbl0121.27801MR120249
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.