Holomorphic rank-2 vector bundles on non-Kähler elliptic surfaces

Vasile Brînzănescu[1]; Ruxandra Moraru

  • [1] Institute of Mathematics Simion Stoilow, Romanian Academy, PO Box 1-764, RO-70700, Bucharest (Roumanie), University of Toronto, department of mathematics, 100 St George Street, Toronto, Ontario M5S 3G3 (Canada)

Annales de l’institut Fourier (2005)

  • Volume: 55, Issue: 5, page 1659-1683
  • ISSN: 0373-0956

Abstract

top
In this paper, we consider the problem of determining which topological complex rank-2 vector bundles on non-Kähler elliptic surfaces admit holomorphic structures; in particular, we give necessary and sufficient conditions for the existence of holomorphic rank-2 vector bundles on non-{Kä}hler elliptic surfaces.

How to cite

top

Brînzănescu, Vasile, and Moraru, Ruxandra. "Holomorphic rank-2 vector bundles on non-Kähler elliptic surfaces." Annales de l’institut Fourier 55.5 (2005): 1659-1683. <http://eudml.org/doc/116228>.

@article{Brînzănescu2005,
abstract = {In this paper, we consider the problem of determining which topological complex rank-2 vector bundles on non-Kähler elliptic surfaces admit holomorphic structures; in particular, we give necessary and sufficient conditions for the existence of holomorphic rank-2 vector bundles on non-\{Kä\}hler elliptic surfaces.},
affiliation = {Institute of Mathematics Simion Stoilow, Romanian Academy, PO Box 1-764, RO-70700, Bucharest (Roumanie), University of Toronto, department of mathematics, 100 St George Street, Toronto, Ontario M5S 3G3 (Canada)},
author = {Brînzănescu, Vasile, Moraru, Ruxandra},
journal = {Annales de l’institut Fourier},
keywords = {Non-Kähler surfaces; ellipic surfaces; holomorphic vector bundles},
language = {eng},
number = {5},
pages = {1659-1683},
publisher = {Association des Annales de l'Institut Fourier},
title = {Holomorphic rank-2 vector bundles on non-Kähler elliptic surfaces},
url = {http://eudml.org/doc/116228},
volume = {55},
year = {2005},
}

TY - JOUR
AU - Brînzănescu, Vasile
AU - Moraru, Ruxandra
TI - Holomorphic rank-2 vector bundles on non-Kähler elliptic surfaces
JO - Annales de l’institut Fourier
PY - 2005
PB - Association des Annales de l'Institut Fourier
VL - 55
IS - 5
SP - 1659
EP - 1683
AB - In this paper, we consider the problem of determining which topological complex rank-2 vector bundles on non-Kähler elliptic surfaces admit holomorphic structures; in particular, we give necessary and sufficient conditions for the existence of holomorphic rank-2 vector bundles on non-{Kä}hler elliptic surfaces.
LA - eng
KW - Non-Kähler surfaces; ellipic surfaces; holomorphic vector bundles
UR - http://eudml.org/doc/116228
ER -

References

top
  1. M. Aprodu, V. Brînzänescu, On the holomorphic rank-2 vector bundles with trivial discriminant over non-Kähler elliptic bundles Zbl1043.32012MR1967049
  2. M. Aprodu, V. Brînzänescu, M. Toma, Holomorphic vector bundles on primary Kodaira surfaces, Math. Z. 242 (2002), 63-73 Zbl1047.32013MR1985450
  3. M. Aprodu, M. Toma, Une note sur les fibrés holomorphes non-filtrables, (2002) 
  4. C. Brînzänescu, J. Le, Potier, Sur l'existence des fibrés vectoriels holomorphes sur les surfaces non-algébriques, J. Reine Angew. Math. 378 (1987), 1-31 Zbl0624.32017MR895281
  5. K. Becker, M. Becker, K. Dasgupta, P. S. Green, Compactification of heterotic theory on non-Kähler complex manifolds: I Zbl1097.81703
  6. W. Barth, C. Peters, A. Van, De, Ven, Compact complex surfaces, (1984), Springer-Verlag, Berlin-Heidelberg-New York Zbl0718.14023
  7. M. Bershadsky, A. Johansen, T. Pantev, V. Sadov, On four-dimentional compactifications of F-theory, Nuclear Phys. B 505 (1997), 165-201 Zbl0925.14019MR1483836
  8. P. J. Braam, J. Hurtubise, Instantons on Hopf surfaces and monopoles on solid tori, J. Reine Angew. Math. 400 (1989), 146-172 Zbl0669.32012MR1013728
  9. V. Brînzänescu, Néron-Severi group for non-algebraic elliptic surfaces I: elliptic bundle case, Manuscripta Math. 79 (1993) 187-195; II: non-Kählerian case, Manuscripta Math. 84 (1994) 415-420; III, Rev. Roumaine Math. Pures Appl. 43(1-2) (1998), 89-95 Zbl0936.32008
  10. V. Brînzänescu, The Picard group of a primary Kodaira surface, Math. Ann. 296 (1993), 725-738 Zbl0803.14016MR1233494
  11. V. Brînzänescu, Holomorphic vector bundles over compact complex surfaces, 1624 (1996), Springer Zbl0848.32024MR1439504
  12. V. Brînzänescu, Double covers and vector bundles, 9 (2001), 21-26 Zbl1035.32012
  13. V. Brînzänescu, P. Flondor, Holomorphic 2-vector bundles on non-algebraic 2-tori, J. Reine Angew. Math. 363 (1985), 47-58 Zbl0567.32009MR814014
  14. V. Brînzänescu, R. Moraru, Twisted Fourier-Mukai transforms and bundles on non-Kähler elliptic surfaces Zbl1133.14040
  15. V. Brînzänescu, R. Moraru, Stable bundles on non-Kähler elliptic surfaces, Comm. Math. Phys. 254 (2005), 565-580 Zbl1071.32009MR2126483
  16. V. Brînzänescu, K. Ueno, Néron-Severi group for torus quasi bundles over curves., Moduli of vector bundles (Sanda 1994; Kyoto, 1994) 179 (1996), 11-32, Dekker, New York Zbl0883.14015
  17. N. P. Buchdahl, Hermitian-Einstein connections and stable vector bundles over compact complex surfaces, Math. Ann. 280 (1988), 625-648 Zbl0617.32044MR939923
  18. G. L. Cardoso, G. Curio, G. Dall'Agata, D. Lüst, P. Manousselis, G. Zoupanos, Non-Kähler string backgrounds and their five torsion classes Zbl1010.83063MR1959324
  19. R. Donagi, Principal bundles on elliptic fibrations, Asian J. Math. 1 (1997), 214-223 Zbl0927.14006MR1491982
  20. R. Donagi, B. Ovrut, T. Pantev, D. Waldram, Standard-model bundles, Adv. Theor. Math. Phys. 5 (2001), 563-615 Zbl1027.14005MR1898371
  21. R. Donagi, B. Ovrut, T. Pantev, D. Waldram, Standard models from heterotic M-theory, Adv. Theor. Math. Phys. 5 (2001), 93-137 Zbl1025.81040MR1894339
  22. G. Elencwajg, O. Forster, Vector bundles on manifolds without divisors and a theorem of deformation, Ann. Inst. Fourier 32 (1982), 25-51 Zbl0488.32012MR694127
  23. R. Friedman, Rank two vector bundles over regular elliptic surfaces, Invent. Math. 96 (1989), 283-332 Zbl0671.14006MR989699
  24. R. Friedman, Algebraic surfaces and holomorphic vector bundles, (1998), Springer-Verlag Zbl0902.14029
  25. R. Friedman, J. W. Morgan, Smooth Four-Manifolds and Complex Surfaces, (1994), Springer-Verlag Zbl0817.14017
  26. R. Friedman, J. Morgan, E. Witten, Vector bundles over elliptic fibrations, J. Algebraic Geom. 2 (1999), 279-401 Zbl0937.14004MR1675162
  27. E. Goldstein, S. Prokushkin, Geometric model for complex non-Kähler manifolds with S U ( 3 ) structure Zbl1085.32009
  28. S. Kobayashi, Differential geometry of complex vector bundles, (1987), Princeton University Press Zbl0708.53002MR909698
  29. K. Kodaira, On the structure of compact complex analytic surfaces I, Amer. J. Math. 86 (1964), 751-798 Zbl0137.17501MR187255
  30. J. Le Potier, Fibrés vectoriels sur les surfaces K3, 1028 (1983), Springer, Berlin Zbl0541.14014MR774978
  31. R. Moraru, Integrable systems associated to a Hopf surface, Canad. J. Math. 55 (2003), 609-635 Zbl1058.37043MR1980616
  32. R. L. E. Schwarzenberger, Vector bundles on algebraic surfaces, Proc. London Math. Soc. 3 (1961), 601-622 Zbl0212.26003MR137711
  33. A. Teleman, Moduli spaces of stable bundles on non-Kähler elliptic fibre bundles over curves, Expo. Math. 16 (1998), 193-248 Zbl0933.14022MR1630918
  34. A. Teleman, M. Toma, Holomorphic vector bundles on non-algebraic surfaces, C. R. Acad. Sci. Paris 334 (2002) Zbl1066.14049MR1892939
  35. M. Toma, Stable bundle with small c 2 over 2-dimensional complex tori, Math. Z. 232 (1999), 511-525 Zbl0945.32007MR1719686

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.