Holomorphic rank-2 vector bundles on non-Kähler elliptic surfaces
Vasile Brînzănescu[1]; Ruxandra Moraru
- [1] Institute of Mathematics Simion Stoilow, Romanian Academy, PO Box 1-764, RO-70700, Bucharest (Roumanie), University of Toronto, department of mathematics, 100 St George Street, Toronto, Ontario M5S 3G3 (Canada)
Annales de l’institut Fourier (2005)
- Volume: 55, Issue: 5, page 1659-1683
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topBrînzănescu, Vasile, and Moraru, Ruxandra. "Holomorphic rank-2 vector bundles on non-Kähler elliptic surfaces." Annales de l’institut Fourier 55.5 (2005): 1659-1683. <http://eudml.org/doc/116228>.
@article{Brînzănescu2005,
abstract = {In this paper, we consider the problem of determining which topological complex rank-2
vector bundles on non-Kähler elliptic surfaces admit holomorphic structures; in
particular, we give necessary and sufficient conditions for the existence of holomorphic
rank-2 vector bundles on non-\{Kä\}hler elliptic surfaces.},
affiliation = {Institute of Mathematics Simion Stoilow, Romanian Academy, PO Box 1-764, RO-70700, Bucharest (Roumanie), University of Toronto, department of mathematics, 100 St George Street, Toronto, Ontario M5S 3G3 (Canada)},
author = {Brînzănescu, Vasile, Moraru, Ruxandra},
journal = {Annales de l’institut Fourier},
keywords = {Non-Kähler surfaces; ellipic surfaces; holomorphic vector bundles},
language = {eng},
number = {5},
pages = {1659-1683},
publisher = {Association des Annales de l'Institut Fourier},
title = {Holomorphic rank-2 vector bundles on non-Kähler elliptic surfaces},
url = {http://eudml.org/doc/116228},
volume = {55},
year = {2005},
}
TY - JOUR
AU - Brînzănescu, Vasile
AU - Moraru, Ruxandra
TI - Holomorphic rank-2 vector bundles on non-Kähler elliptic surfaces
JO - Annales de l’institut Fourier
PY - 2005
PB - Association des Annales de l'Institut Fourier
VL - 55
IS - 5
SP - 1659
EP - 1683
AB - In this paper, we consider the problem of determining which topological complex rank-2
vector bundles on non-Kähler elliptic surfaces admit holomorphic structures; in
particular, we give necessary and sufficient conditions for the existence of holomorphic
rank-2 vector bundles on non-{Kä}hler elliptic surfaces.
LA - eng
KW - Non-Kähler surfaces; ellipic surfaces; holomorphic vector bundles
UR - http://eudml.org/doc/116228
ER -
References
top- M. Aprodu, V. Brînzänescu, On the holomorphic rank-2 vector bundles with trivial discriminant over non-Kähler elliptic bundles Zbl1043.32012MR1967049
- M. Aprodu, V. Brînzänescu, M. Toma, Holomorphic vector bundles on primary Kodaira surfaces, Math. Z. 242 (2002), 63-73 Zbl1047.32013MR1985450
- M. Aprodu, M. Toma, Une note sur les fibrés holomorphes non-filtrables, (2002)
- C. Brînzänescu, J. Le, Potier, Sur l'existence des fibrés vectoriels holomorphes sur les surfaces non-algébriques, J. Reine Angew. Math. 378 (1987), 1-31 Zbl0624.32017MR895281
- K. Becker, M. Becker, K. Dasgupta, P. S. Green, Compactification of heterotic theory on non-Kähler complex manifolds: I Zbl1097.81703
- W. Barth, C. Peters, A. Van, De, Ven, Compact complex surfaces, (1984), Springer-Verlag, Berlin-Heidelberg-New York Zbl0718.14023
- M. Bershadsky, A. Johansen, T. Pantev, V. Sadov, On four-dimentional compactifications of F-theory, Nuclear Phys. B 505 (1997), 165-201 Zbl0925.14019MR1483836
- P. J. Braam, J. Hurtubise, Instantons on Hopf surfaces and monopoles on solid tori, J. Reine Angew. Math. 400 (1989), 146-172 Zbl0669.32012MR1013728
- V. Brînzänescu, Néron-Severi group for non-algebraic elliptic surfaces I: elliptic bundle case, Manuscripta Math. 79 (1993) 187-195; II: non-Kählerian case, Manuscripta Math. 84 (1994) 415-420; III, Rev. Roumaine Math. Pures Appl. 43(1-2) (1998), 89-95 Zbl0936.32008
- V. Brînzänescu, The Picard group of a primary Kodaira surface, Math. Ann. 296 (1993), 725-738 Zbl0803.14016MR1233494
- V. Brînzänescu, Holomorphic vector bundles over compact complex surfaces, 1624 (1996), Springer Zbl0848.32024MR1439504
- V. Brînzänescu, Double covers and vector bundles, 9 (2001), 21-26 Zbl1035.32012
- V. Brînzänescu, P. Flondor, Holomorphic 2-vector bundles on non-algebraic 2-tori, J. Reine Angew. Math. 363 (1985), 47-58 Zbl0567.32009MR814014
- V. Brînzänescu, R. Moraru, Twisted Fourier-Mukai transforms and bundles on non-Kähler elliptic surfaces Zbl1133.14040
- V. Brînzänescu, R. Moraru, Stable bundles on non-Kähler elliptic surfaces, Comm. Math. Phys. 254 (2005), 565-580 Zbl1071.32009MR2126483
- V. Brînzänescu, K. Ueno, Néron-Severi group for torus quasi bundles over curves., Moduli of vector bundles (Sanda 1994; Kyoto, 1994) 179 (1996), 11-32, Dekker, New York Zbl0883.14015
- N. P. Buchdahl, Hermitian-Einstein connections and stable vector bundles over compact complex surfaces, Math. Ann. 280 (1988), 625-648 Zbl0617.32044MR939923
- G. L. Cardoso, G. Curio, G. Dall'Agata, D. Lüst, P. Manousselis, G. Zoupanos, Non-Kähler string backgrounds and their five torsion classes Zbl1010.83063MR1959324
- R. Donagi, Principal bundles on elliptic fibrations, Asian J. Math. 1 (1997), 214-223 Zbl0927.14006MR1491982
- R. Donagi, B. Ovrut, T. Pantev, D. Waldram, Standard-model bundles, Adv. Theor. Math. Phys. 5 (2001), 563-615 Zbl1027.14005MR1898371
- R. Donagi, B. Ovrut, T. Pantev, D. Waldram, Standard models from heterotic M-theory, Adv. Theor. Math. Phys. 5 (2001), 93-137 Zbl1025.81040MR1894339
- G. Elencwajg, O. Forster, Vector bundles on manifolds without divisors and a theorem of deformation, Ann. Inst. Fourier 32 (1982), 25-51 Zbl0488.32012MR694127
- R. Friedman, Rank two vector bundles over regular elliptic surfaces, Invent. Math. 96 (1989), 283-332 Zbl0671.14006MR989699
- R. Friedman, Algebraic surfaces and holomorphic vector bundles, (1998), Springer-Verlag Zbl0902.14029
- R. Friedman, J. W. Morgan, Smooth Four-Manifolds and Complex Surfaces, (1994), Springer-Verlag Zbl0817.14017
- R. Friedman, J. Morgan, E. Witten, Vector bundles over elliptic fibrations, J. Algebraic Geom. 2 (1999), 279-401 Zbl0937.14004MR1675162
- E. Goldstein, S. Prokushkin, Geometric model for complex non-Kähler manifolds with structure Zbl1085.32009
- S. Kobayashi, Differential geometry of complex vector bundles, (1987), Princeton University Press Zbl0708.53002MR909698
- K. Kodaira, On the structure of compact complex analytic surfaces I, Amer. J. Math. 86 (1964), 751-798 Zbl0137.17501MR187255
- J. Le Potier, Fibrés vectoriels sur les surfaces K3, 1028 (1983), Springer, Berlin Zbl0541.14014MR774978
- R. Moraru, Integrable systems associated to a Hopf surface, Canad. J. Math. 55 (2003), 609-635 Zbl1058.37043MR1980616
- R. L. E. Schwarzenberger, Vector bundles on algebraic surfaces, Proc. London Math. Soc. 3 (1961), 601-622 Zbl0212.26003MR137711
- A. Teleman, Moduli spaces of stable bundles on non-Kähler elliptic fibre bundles over curves, Expo. Math. 16 (1998), 193-248 Zbl0933.14022MR1630918
- A. Teleman, M. Toma, Holomorphic vector bundles on non-algebraic surfaces, C. R. Acad. Sci. Paris 334 (2002) Zbl1066.14049MR1892939
- M. Toma, Stable bundle with small over 2-dimensional complex tori, Math. Z. 232 (1999), 511-525 Zbl0945.32007MR1719686
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.