The spectral matrices of Toda solitons and the fundamental solution of some discrete heat equations

Luc Haine[1]

  • [1] Université catholique de Louvain, institut de mathématique pure et appliquée, chemin du Cyclotron 2, 1348 Louvain-la-Neuve (Belgique)

Annales de l’institut Fourier (2005)

  • Volume: 55, Issue: 6, page 1765-1788
  • ISSN: 0373-0956

Abstract

top
The Stieltjes spectral matrix measure of the doubly infinite Jacobi matrix associated with a Toda g -soliton is computed, using Sato theory. The result is used to give an explicit expansion of the fundamental solution of some discrete heat equations, in a series of Jackson’s q -Bessel functions. For Askey-Wilson type solitons, this expansion reduces to a finite sum.

How to cite

top

Haine, Luc. "The spectral matrices of Toda solitons and the fundamental solution of some discrete heat equations." Annales de l’institut Fourier 55.6 (2005): 1765-1788. <http://eudml.org/doc/116232>.

@article{Haine2005,
abstract = {The Stieltjes spectral matrix measure of the doubly infinite Jacobi matrix associated with a Toda $g$-soliton is computed, using Sato theory. The result is used to give an explicit expansion of the fundamental solution of some discrete heat equations, in a series of Jackson’s $q$-Bessel functions. For Askey-Wilson type solitons, this expansion reduces to a finite sum.},
affiliation = {Université catholique de Louvain, institut de mathématique pure et appliquée, chemin du Cyclotron 2, 1348 Louvain-la-Neuve (Belgique)},
author = {Haine, Luc},
journal = {Annales de l’institut Fourier},
keywords = {Heat kernel; Toda lattice hierarchy; heat kernel; discrete heat equations; Jackson’s -Bessel functions},
language = {eng},
number = {6},
pages = {1765-1788},
publisher = {Association des Annales de l'Institut Fourier},
title = {The spectral matrices of Toda solitons and the fundamental solution of some discrete heat equations},
url = {http://eudml.org/doc/116232},
volume = {55},
year = {2005},
}

TY - JOUR
AU - Haine, Luc
TI - The spectral matrices of Toda solitons and the fundamental solution of some discrete heat equations
JO - Annales de l’institut Fourier
PY - 2005
PB - Association des Annales de l'Institut Fourier
VL - 55
IS - 6
SP - 1765
EP - 1788
AB - The Stieltjes spectral matrix measure of the doubly infinite Jacobi matrix associated with a Toda $g$-soliton is computed, using Sato theory. The result is used to give an explicit expansion of the fundamental solution of some discrete heat equations, in a series of Jackson’s $q$-Bessel functions. For Askey-Wilson type solitons, this expansion reduces to a finite sum.
LA - eng
KW - Heat kernel; Toda lattice hierarchy; heat kernel; discrete heat equations; Jackson’s -Bessel functions
UR - http://eudml.org/doc/116232
ER -

References

top
  1. M. Adler, J. Moser, On a class of polynomials connected with the Korteweg-de Vries equation, Commun. Math. Phys. 61 (1978), 1-30 Zbl0428.35067MR501106
  2. R. Askey, J. Wilson, Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials, Mem. Amer. Math. Soc. (1985) Zbl0572.33012MR783216
  3. Yu. Berest, ``Huygens' principle and the bispectral problem, The Bispectral Problem 14 (1998), 11-30, Amer. Math. Soc., Providence, RI Zbl0897.35043
  4. Yu. Berest, A. P. Veselov, Hadamard's problem and Coxeter groups: new examples of Huygens' equations, Funktsional. Anal. i Prilozhen. 28 (1) (1994), 3-15 (Russian); English transl., Funct. Anal. Appl. 28 (1994), 3-12 Zbl0845.35062MR1275723
  5. Ju. M. Berezanskii, Expansions in Eigenfunctions of Selfadjoint Operators, 17 (1968), Amer. Math. Soc., Providence Zbl0157.16601
  6. O. A. Chalykh, A. P. Veselov, Integrability and Huygens' principle on symmetric spaces, Commun. Math. Phys. 178 (1996), 311-338 Zbl0859.43004MR1389907
  7. O. A. Chalykh, M. V. Feigin, A. P. Veselov, Multidimensional Baker-Akhiezer functions and Huygens' principle, Commun. Math. Phys. 206 (1999), 533-566 Zbl0972.35110MR1721907
  8. P. Deift, L. C. Li, C. Tomei, Toda flows with infinitely many variables, J. Funct. Anal. 64 (1985), 358-402 Zbl0615.58016MR813206
  9. P. Deift, E. Trubowitz, Inverse scattering on the line, Comm. Pure Appl. Math. 32 (1979), 121-251 Zbl0388.34005MR512420
  10. J. F. Van, Diejen, A. N. Kirillov, Formulas for q-spherical functions using inverse scattering theory of reflectionless Jacobi operators, Commun. Math. Phys. 210 (2000), 335-369 Zbl0976.33017MR1776836
  11. B. A. Dubrovin, V. B. Matveev, S. P. Novikov, Non-linear equations of Korteweg-de Vries type, finite-zone linear operators, and abelian varieties, Uspekhi Mat. Nauk. 31 (1) (1976), 55-136 (Russian); English transl., Russ. Math. Surveys 31 (1976), 59-146 Zbl0346.35025MR427869
  12. J. J. Duistermaat, F. A. Grünbaum, Differential equations in the spectral parameter, Commun. Math. Phys. 103 (1986), 177-240 Zbl0625.34007MR826863
  13. H. Flaschka, On the Toda lattice II - Inverse scattering solution, Progr. Theor. Phys. 51 (1974), 703-716 Zbl0942.37505MR408648
  14. G. Gasper, M. Rahman, Basic hypergeometric series, 35 (1990), Cambridge University Press Zbl0695.33001MR1052153
  15. F. A. Grünbaum, Some bispectral musings, The Bispectral Problem 14 (1998), 31-45, Amer. Math. Soc., Providence, RI Zbl0944.34062
  16. F. A. Grünbaum, The bispectral problem: an overview, Special Functions 2000: Current Perspective and Future Directions (2001), 129-140, Kluwer Zbl0999.47018
  17. F. A. Grünbaum, L. Haine, Some functions that generalize the Askey-Wilson polynomials, Commun. Math. Phys. 184 (1997), 173-202 Zbl0871.33009MR1462504
  18. F. A. Grünbaum, L. Haine, Associated polynomials, spectral matrices and the bispectral problem, Meth. Appl. Anal. 6 (1999), 209-224 Zbl0956.33007MR1803891
  19. F. A. Grünbaum, P. Iliev, Heat kernel expansions on the integers, Math. Phys. Anal. Geom. 5 (2002), 183-200 Zbl0996.35077MR1918052
  20. L. Haine, The q-hypergeometric equation, Askey-Wilson type solitons andrational curves with singularities, The Kowalevski Property 32 (2002), 69-91, Amer. Math. Soc., Providence, RI Zbl1037.33015
  21. L. Haine, P. Iliev, Commutative rings of difference operators and an adelic flag manifold, Internat. Math. Res. Notices 6 (2000), 281-323 Zbl0984.37078MR1749073
  22. L. Haine, P. Iliev, A rational analogue of the Krall polynomials, J. Phys. A: Math. Gen. 34 (2001), 2445-2457 Zbl0974.33011MR1831308
  23. L. Haine, P. Iliev, Askey-Wilson type functions, with bound states Zbl1100.33004
  24. M. E. H. Ismail, The basic Bessel functions and polynomials, SIAM J. Math. Anal. 12 (1981), 454-468 Zbl0456.33005MR613323
  25. F. H. Jackson, The application of basic numbers to Bessel's and Legendre's functions, Proc. London Math. Soc. 2 (1905), 192-220 Zbl36.0513.01
  26. M. Kac, Integration in Function Spaces and Some of Its Applications, (1980), Accademia Nazionale Dei Lincei Scuola Normale Superiore, Lezion, Pisa Zbl0504.28015MR660839
  27. I. M. Krichever, Algebraic curves and nonlinear difference equations, Uspekhi Mat. Nauk 33 (1978), 215-216 (Russian); English transl. 33 (1978), 255-256 Zbl0412.39002MR510681
  28. J. E. Lagnese, K. L. Stellmacher, A method of generating classes of Huygens' operators, J. Math. Mech. 17 (1967), 461-472 Zbl0154.36002MR217409
  29. J. E. Lagnese, A solution of Hadamard's problem for a restricted class of operators, Proc. Amer. Math. Soc. 19 (1968), 981-988 Zbl0159.14203MR231024
  30. H. P. Mc, Kean, P. van Moerbeke, The spectrum of Hill's equation, Inventiones Math. 30 (1975), 217-274 Zbl0319.34024MR397076
  31. P. van Moerbeke, D. Mumford, The spectrum of difference operators and algebraic curves, Acta Math. 143 (1979), 93-154 Zbl0502.58032MR533894
  32. F. W. Nijhoff, O. A. Chalykh, Bispectral rings of difference operators, Russ. Math. Surveys 54 (1999), 644-645 Zbl0977.39012MR1728657
  33. R. Schimming, An explicit expression for the Korteweg-de Vries hierarchy, Z. Anal. Anwendungen 7 (1988), 203-214 Zbl0659.35089MR951118
  34. G. Segal, G. Wilson, Loop groups and equations of KdV type, Inst. Hautes Études Sci. Publ. Math. 61 (1985), 5-65 Zbl0592.35112MR783348
  35. M. Toda, Theory of Nonlinear Lattices, 20 (1981), Springer, Berlin, Heidelberg, New-York, Zbl0465.70014MR618652
  36. G. Wilson, Bispectral commutative ordinary differential operators, J. Reine Angew. Math. 442 (1993), 177-204 Zbl0781.34051MR1234841

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.