The spectral matrices of Toda solitons and the fundamental solution of some discrete heat equations
Luc Haine[1]
- [1] Université catholique de Louvain, institut de mathématique pure et appliquée, chemin du Cyclotron 2, 1348 Louvain-la-Neuve (Belgique)
Annales de l’institut Fourier (2005)
- Volume: 55, Issue: 6, page 1765-1788
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topHaine, Luc. "The spectral matrices of Toda solitons and the fundamental solution of some discrete heat equations." Annales de l’institut Fourier 55.6 (2005): 1765-1788. <http://eudml.org/doc/116232>.
@article{Haine2005,
abstract = {The Stieltjes spectral matrix measure of the doubly infinite Jacobi matrix associated
with a Toda $g$-soliton is computed, using Sato theory. The result is used to give an
explicit expansion of the fundamental solution of some discrete heat equations, in a
series of Jackson’s $q$-Bessel functions. For Askey-Wilson type solitons, this expansion
reduces to a finite sum.},
affiliation = {Université catholique de Louvain, institut de mathématique pure et appliquée, chemin du Cyclotron 2, 1348 Louvain-la-Neuve (Belgique)},
author = {Haine, Luc},
journal = {Annales de l’institut Fourier},
keywords = {Heat kernel; Toda lattice hierarchy; heat kernel; discrete heat equations; Jackson’s -Bessel functions},
language = {eng},
number = {6},
pages = {1765-1788},
publisher = {Association des Annales de l'Institut Fourier},
title = {The spectral matrices of Toda solitons and the fundamental solution of some discrete heat equations},
url = {http://eudml.org/doc/116232},
volume = {55},
year = {2005},
}
TY - JOUR
AU - Haine, Luc
TI - The spectral matrices of Toda solitons and the fundamental solution of some discrete heat equations
JO - Annales de l’institut Fourier
PY - 2005
PB - Association des Annales de l'Institut Fourier
VL - 55
IS - 6
SP - 1765
EP - 1788
AB - The Stieltjes spectral matrix measure of the doubly infinite Jacobi matrix associated
with a Toda $g$-soliton is computed, using Sato theory. The result is used to give an
explicit expansion of the fundamental solution of some discrete heat equations, in a
series of Jackson’s $q$-Bessel functions. For Askey-Wilson type solitons, this expansion
reduces to a finite sum.
LA - eng
KW - Heat kernel; Toda lattice hierarchy; heat kernel; discrete heat equations; Jackson’s -Bessel functions
UR - http://eudml.org/doc/116232
ER -
References
top- M. Adler, J. Moser, On a class of polynomials connected with the Korteweg-de Vries equation, Commun. Math. Phys. 61 (1978), 1-30 Zbl0428.35067MR501106
- R. Askey, J. Wilson, Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials, Mem. Amer. Math. Soc. (1985) Zbl0572.33012MR783216
- Yu. Berest, ``Huygens' principle and the bispectral problem, The Bispectral Problem 14 (1998), 11-30, Amer. Math. Soc., Providence, RI Zbl0897.35043
- Yu. Berest, A. P. Veselov, Hadamard's problem and Coxeter groups: new examples of Huygens' equations, Funktsional. Anal. i Prilozhen. 28 (1) (1994), 3-15 (Russian); English transl., Funct. Anal. Appl. 28 (1994), 3-12 Zbl0845.35062MR1275723
- Ju. M. Berezanskii, Expansions in Eigenfunctions of Selfadjoint Operators, 17 (1968), Amer. Math. Soc., Providence Zbl0157.16601
- O. A. Chalykh, A. P. Veselov, Integrability and Huygens' principle on symmetric spaces, Commun. Math. Phys. 178 (1996), 311-338 Zbl0859.43004MR1389907
- O. A. Chalykh, M. V. Feigin, A. P. Veselov, Multidimensional Baker-Akhiezer functions and Huygens' principle, Commun. Math. Phys. 206 (1999), 533-566 Zbl0972.35110MR1721907
- P. Deift, L. C. Li, C. Tomei, Toda flows with infinitely many variables, J. Funct. Anal. 64 (1985), 358-402 Zbl0615.58016MR813206
- P. Deift, E. Trubowitz, Inverse scattering on the line, Comm. Pure Appl. Math. 32 (1979), 121-251 Zbl0388.34005MR512420
- J. F. Van, Diejen, A. N. Kirillov, Formulas for q-spherical functions using inverse scattering theory of reflectionless Jacobi operators, Commun. Math. Phys. 210 (2000), 335-369 Zbl0976.33017MR1776836
- B. A. Dubrovin, V. B. Matveev, S. P. Novikov, Non-linear equations of Korteweg-de Vries type, finite-zone linear operators, and abelian varieties, Uspekhi Mat. Nauk. 31 (1) (1976), 55-136 (Russian); English transl., Russ. Math. Surveys 31 (1976), 59-146 Zbl0346.35025MR427869
- J. J. Duistermaat, F. A. Grünbaum, Differential equations in the spectral parameter, Commun. Math. Phys. 103 (1986), 177-240 Zbl0625.34007MR826863
- H. Flaschka, On the Toda lattice II - Inverse scattering solution, Progr. Theor. Phys. 51 (1974), 703-716 Zbl0942.37505MR408648
- G. Gasper, M. Rahman, Basic hypergeometric series, 35 (1990), Cambridge University Press Zbl0695.33001MR1052153
- F. A. Grünbaum, Some bispectral musings, The Bispectral Problem 14 (1998), 31-45, Amer. Math. Soc., Providence, RI Zbl0944.34062
- F. A. Grünbaum, The bispectral problem: an overview, Special Functions 2000: Current Perspective and Future Directions (2001), 129-140, Kluwer Zbl0999.47018
- F. A. Grünbaum, L. Haine, Some functions that generalize the Askey-Wilson polynomials, Commun. Math. Phys. 184 (1997), 173-202 Zbl0871.33009MR1462504
- F. A. Grünbaum, L. Haine, Associated polynomials, spectral matrices and the bispectral problem, Meth. Appl. Anal. 6 (1999), 209-224 Zbl0956.33007MR1803891
- F. A. Grünbaum, P. Iliev, Heat kernel expansions on the integers, Math. Phys. Anal. Geom. 5 (2002), 183-200 Zbl0996.35077MR1918052
- L. Haine, The q-hypergeometric equation, Askey-Wilson type solitons andrational curves with singularities, The Kowalevski Property 32 (2002), 69-91, Amer. Math. Soc., Providence, RI Zbl1037.33015
- L. Haine, P. Iliev, Commutative rings of difference operators and an adelic flag manifold, Internat. Math. Res. Notices 6 (2000), 281-323 Zbl0984.37078MR1749073
- L. Haine, P. Iliev, A rational analogue of the Krall polynomials, J. Phys. A: Math. Gen. 34 (2001), 2445-2457 Zbl0974.33011MR1831308
- L. Haine, P. Iliev, Askey-Wilson type functions, with bound states Zbl1100.33004
- M. E. H. Ismail, The basic Bessel functions and polynomials, SIAM J. Math. Anal. 12 (1981), 454-468 Zbl0456.33005MR613323
- F. H. Jackson, The application of basic numbers to Bessel's and Legendre's functions, Proc. London Math. Soc. 2 (1905), 192-220 Zbl36.0513.01
- M. Kac, Integration in Function Spaces and Some of Its Applications, (1980), Accademia Nazionale Dei Lincei Scuola Normale Superiore, Lezion, Pisa Zbl0504.28015MR660839
- I. M. Krichever, Algebraic curves and nonlinear difference equations, Uspekhi Mat. Nauk 33 (1978), 215-216 (Russian); English transl. 33 (1978), 255-256 Zbl0412.39002MR510681
- J. E. Lagnese, K. L. Stellmacher, A method of generating classes of Huygens' operators, J. Math. Mech. 17 (1967), 461-472 Zbl0154.36002MR217409
- J. E. Lagnese, A solution of Hadamard's problem for a restricted class of operators, Proc. Amer. Math. Soc. 19 (1968), 981-988 Zbl0159.14203MR231024
- H. P. Mc, Kean, P. van Moerbeke, The spectrum of Hill's equation, Inventiones Math. 30 (1975), 217-274 Zbl0319.34024MR397076
- P. van Moerbeke, D. Mumford, The spectrum of difference operators and algebraic curves, Acta Math. 143 (1979), 93-154 Zbl0502.58032MR533894
- F. W. Nijhoff, O. A. Chalykh, Bispectral rings of difference operators, Russ. Math. Surveys 54 (1999), 644-645 Zbl0977.39012MR1728657
- R. Schimming, An explicit expression for the Korteweg-de Vries hierarchy, Z. Anal. Anwendungen 7 (1988), 203-214 Zbl0659.35089MR951118
- G. Segal, G. Wilson, Loop groups and equations of KdV type, Inst. Hautes Études Sci. Publ. Math. 61 (1985), 5-65 Zbl0592.35112MR783348
- M. Toda, Theory of Nonlinear Lattices, 20 (1981), Springer, Berlin, Heidelberg, New-York, Zbl0465.70014MR618652
- G. Wilson, Bispectral commutative ordinary differential operators, J. Reine Angew. Math. 442 (1993), 177-204 Zbl0781.34051MR1234841
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.