On the heat kernel and the Korteweg--de Vries hierarchy

Plamen Iliev[1]

  • [1] Georgia Institute of Technology, school of mathematics, Atlanta GA 30332-0160 (USA)

Annales de l’institut Fourier (2005)

  • Volume: 55, Issue: 6, page 2117-2127
  • ISSN: 0373-0956

Abstract

top
We give explicit formulas for Hadamard's coefficients in terms of the tau-function of the Korteweg-de Vries hierarchy. We show that some of the basic properties of these coefficients can be easily derived from these formulas.

How to cite

top

Iliev, Plamen. "On the heat kernel and the Korteweg--de Vries hierarchy." Annales de l’institut Fourier 55.6 (2005): 2117-2127. <http://eudml.org/doc/116246>.

@article{Iliev2005,
abstract = {We give explicit formulas for Hadamard's coefficients in terms of the tau-function of the Korteweg-de Vries hierarchy. We show that some of the basic properties of these coefficients can be easily derived from these formulas.},
affiliation = {Georgia Institute of Technology, school of mathematics, Atlanta GA 30332-0160 (USA)},
author = {Iliev, Plamen},
journal = {Annales de l’institut Fourier},
keywords = {Heat kernel expansions; KdV hierarchy; tau functions; heat kernel expansions},
language = {eng},
number = {6},
pages = {2117-2127},
publisher = {Association des Annales de l'Institut Fourier},
title = {On the heat kernel and the Korteweg--de Vries hierarchy},
url = {http://eudml.org/doc/116246},
volume = {55},
year = {2005},
}

TY - JOUR
AU - Iliev, Plamen
TI - On the heat kernel and the Korteweg--de Vries hierarchy
JO - Annales de l’institut Fourier
PY - 2005
PB - Association des Annales de l'Institut Fourier
VL - 55
IS - 6
SP - 2117
EP - 2127
AB - We give explicit formulas for Hadamard's coefficients in terms of the tau-function of the Korteweg-de Vries hierarchy. We show that some of the basic properties of these coefficients can be easily derived from these formulas.
LA - eng
KW - Heat kernel expansions; KdV hierarchy; tau functions; heat kernel expansions
UR - http://eudml.org/doc/116246
ER -

References

top
  1. M. Adler, J. Moser, On a class of polynomials connected with the Korteweg-de Vries equation, Comm. Math. Phys. 61 (1978), 1-30 Zbl0428.35067MR501106
  2. H. Airault, H. P. McKean, J. Moser, Rational and elliptic solutions of the Korteweg-de Vries equation and a related many-body problem, Comm. Pure Appl. Math. 30 (1977), 95-148 Zbl0338.35024MR649926
  3. G. Andrews, R. Askey, R. Roy, Special Functions, 71 (1990), Cambridge University Press Zbl0920.33001
  4. I. Avramidi, R. Schimming, A new explicit expression for the Korteweg-de Vries hierarchy, Math. Nachr. 219 (2000), 45-64 Zbl0984.37084MR1791911
  5. N. Berline, E. Getzler, M. Vergne, Heat kernels and Dirac operators, 298 (1992), Springer-Verlag, Berlin Zbl0744.58001MR1215720
  6. M. Berger, Geometry of the Spectrum, 27 (1975), Amer. Math. Soc., Providence Zbl0311.53055
  7. E. Date, M. Jimbo, M. Kashiwara, T. Miwa, Transformation groups for soliton equations, (1983), 39-119, World Scientific, Singapore Zbl0571.35098
  8. L. A. Dickey, Soliton Equations and Hamiltonian Systems, 2nd Edition, 26 (2003), World Scienti?c Zbl1140.35012MR1964513
  9. J. J. Duistermaat, F. A. Grünbaum, Differential equations in the spectral parameter, Comm. Math. Phys. 103 (1986), 177-240 Zbl0625.34007MR826863
  10. S. A. Fulling (ed.), Heat kernel techniques and quantum gravity (Winnipeg, MB, 1994), 4 (1995), Texas A & M Univ., College Station, TX Zbl0845.00044MR1424245
  11. P. Gilkey, Heat equation asymptotics, 54, Part 3 (1993), Amer. Math. Soc., Providence, RI Zbl0791.58092MR1216627
  12. F. A. Grünbaum, P. Iliev, Heat kernel expansions on the integers, Math. Phys. Anal. Geom. 5 (2002), 183-200 Zbl0996.35077MR1918052
  13. J. Hadamard, Lectures on Cauchy's Problem, New Haven, Yale Univ. Press (1923) Zbl49.0725.04
  14. L. Haine, The spectral matrices of Toda solitons and the fundamental solution of some discrete heat equations Zbl1078.35101
  15. R. Hirota, The direct method in soliton theory, 155 (2004), Cambridge University Press, Cambridge Zbl1099.35111
  16. P. Iliev, Finite heat kernel expansions on the real line Zbl1121.35124
  17. M. Kac, Can one hear the shape of a drum?, Amer. Math. Monthly 73 (1966), 1-23 Zbl0139.05603MR201237
  18. H. P. McKean, I. Singer, Curvature and the eigenvalues of the Laplacian, J. Diff. Geom. 1 (1967), 43-69 Zbl0198.44301MR217739
  19. H. P. McKean, P. van Moerbeke, The spectrum of Hill's equation, Invent. Math. 30 (1975), 217-274 Zbl0319.34024MR397076
  20. M. Sato, Y. Sato, Soliton equations as dynamical systems on infinite dimensional Grassmann manifolds, Lect. Notes Num. Appl. Anal. 5 (1982), 259-271 Zbl0528.58020MR730247
  21. R. Schimming, An explicit expression for the Korteweg-de Vries hierarchy, Z. Anal. Anwendungen 7 (1988), 203-214 Zbl0659.35089MR951118
  22. P. van Moerbeke, Integrable foundations of string theory, Lectures on integrable systems, CIMPA-Summer school at Sophia– Antipolis (1991) (1994), 163-267, Singapore: World Scientific Zbl0850.81049

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.