On the heat kernel and the Korteweg--de Vries hierarchy
Plamen Iliev[1]
- [1] Georgia Institute of Technology, school of mathematics, Atlanta GA 30332-0160 (USA)
Annales de l’institut Fourier (2005)
- Volume: 55, Issue: 6, page 2117-2127
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topIliev, Plamen. "On the heat kernel and the Korteweg--de Vries hierarchy." Annales de l’institut Fourier 55.6 (2005): 2117-2127. <http://eudml.org/doc/116246>.
@article{Iliev2005,
abstract = {We give explicit formulas for Hadamard's coefficients in terms of the tau-function of the
Korteweg-de Vries hierarchy. We show that some of the basic properties of these
coefficients can be easily derived from these formulas.},
affiliation = {Georgia Institute of Technology, school of mathematics, Atlanta GA 30332-0160 (USA)},
author = {Iliev, Plamen},
journal = {Annales de l’institut Fourier},
keywords = {Heat kernel expansions; KdV hierarchy; tau functions; heat kernel expansions},
language = {eng},
number = {6},
pages = {2117-2127},
publisher = {Association des Annales de l'Institut Fourier},
title = {On the heat kernel and the Korteweg--de Vries hierarchy},
url = {http://eudml.org/doc/116246},
volume = {55},
year = {2005},
}
TY - JOUR
AU - Iliev, Plamen
TI - On the heat kernel and the Korteweg--de Vries hierarchy
JO - Annales de l’institut Fourier
PY - 2005
PB - Association des Annales de l'Institut Fourier
VL - 55
IS - 6
SP - 2117
EP - 2127
AB - We give explicit formulas for Hadamard's coefficients in terms of the tau-function of the
Korteweg-de Vries hierarchy. We show that some of the basic properties of these
coefficients can be easily derived from these formulas.
LA - eng
KW - Heat kernel expansions; KdV hierarchy; tau functions; heat kernel expansions
UR - http://eudml.org/doc/116246
ER -
References
top- M. Adler, J. Moser, On a class of polynomials connected with the Korteweg-de Vries equation, Comm. Math. Phys. 61 (1978), 1-30 Zbl0428.35067MR501106
- H. Airault, H. P. McKean, J. Moser, Rational and elliptic solutions of the Korteweg-de Vries equation and a related many-body problem, Comm. Pure Appl. Math. 30 (1977), 95-148 Zbl0338.35024MR649926
- G. Andrews, R. Askey, R. Roy, Special Functions, 71 (1990), Cambridge University Press Zbl0920.33001
- I. Avramidi, R. Schimming, A new explicit expression for the Korteweg-de Vries hierarchy, Math. Nachr. 219 (2000), 45-64 Zbl0984.37084MR1791911
- N. Berline, E. Getzler, M. Vergne, Heat kernels and Dirac operators, 298 (1992), Springer-Verlag, Berlin Zbl0744.58001MR1215720
- M. Berger, Geometry of the Spectrum, 27 (1975), Amer. Math. Soc., Providence Zbl0311.53055
- E. Date, M. Jimbo, M. Kashiwara, T. Miwa, Transformation groups for soliton equations, (1983), 39-119, World Scientific, Singapore Zbl0571.35098
- L. A. Dickey, Soliton Equations and Hamiltonian Systems, 2nd Edition, 26 (2003), World Scienti?c Zbl1140.35012MR1964513
- J. J. Duistermaat, F. A. Grünbaum, Differential equations in the spectral parameter, Comm. Math. Phys. 103 (1986), 177-240 Zbl0625.34007MR826863
- S. A. Fulling (ed.), Heat kernel techniques and quantum gravity (Winnipeg, MB, 1994), 4 (1995), Texas A & M Univ., College Station, TX Zbl0845.00044MR1424245
- P. Gilkey, Heat equation asymptotics, 54, Part 3 (1993), Amer. Math. Soc., Providence, RI Zbl0791.58092MR1216627
- F. A. Grünbaum, P. Iliev, Heat kernel expansions on the integers, Math. Phys. Anal. Geom. 5 (2002), 183-200 Zbl0996.35077MR1918052
- J. Hadamard, Lectures on Cauchy's Problem, New Haven, Yale Univ. Press (1923) Zbl49.0725.04
- L. Haine, The spectral matrices of Toda solitons and the fundamental solution of some discrete heat equations Zbl1078.35101
- R. Hirota, The direct method in soliton theory, 155 (2004), Cambridge University Press, Cambridge Zbl1099.35111
- P. Iliev, Finite heat kernel expansions on the real line Zbl1121.35124
- M. Kac, Can one hear the shape of a drum?, Amer. Math. Monthly 73 (1966), 1-23 Zbl0139.05603MR201237
- H. P. McKean, I. Singer, Curvature and the eigenvalues of the Laplacian, J. Diff. Geom. 1 (1967), 43-69 Zbl0198.44301MR217739
- H. P. McKean, P. van Moerbeke, The spectrum of Hill's equation, Invent. Math. 30 (1975), 217-274 Zbl0319.34024MR397076
- M. Sato, Y. Sato, Soliton equations as dynamical systems on infinite dimensional Grassmann manifolds, Lect. Notes Num. Appl. Anal. 5 (1982), 259-271 Zbl0528.58020MR730247
- R. Schimming, An explicit expression for the Korteweg-de Vries hierarchy, Z. Anal. Anwendungen 7 (1988), 203-214 Zbl0659.35089MR951118
- P. van Moerbeke, Integrable foundations of string theory, Lectures on integrable systems, CIMPA-Summer school at Sophia Antipolis (1991) (1994), 163-267, Singapore: World Scientific Zbl0850.81049
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.