Proof of the Treves theorem on the KdV hierarchy
- [1] University of Oklahoma, department of mathematics, physical science center, 601 Elm Avenue, Norman, Oklahoma 73019 (USA)
Annales de l’institut Fourier (2005)
- Volume: 55, Issue: 6, page 2015-2023
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topDickey, Leonid. "Proof of the Treves theorem on the KdV hierarchy." Annales de l’institut Fourier 55.6 (2005): 2015-2023. <http://eudml.org/doc/116241>.
@article{Dickey2005,
abstract = {A new, shorter, proof of the Treves theorem on an algebraic criterion for the first
integrals of the KdV hierarchy is given, along with an addition to the theorem.},
affiliation = {University of Oklahoma, department of mathematics, physical science center, 601 Elm Avenue, Norman, Oklahoma 73019 (USA)},
author = {Dickey, Leonid},
journal = {Annales de l’institut Fourier},
keywords = {KdV; first integrals; Treves; Treves' criterion},
language = {eng},
number = {6},
pages = {2015-2023},
publisher = {Association des Annales de l'Institut Fourier},
title = {Proof of the Treves theorem on the KdV hierarchy},
url = {http://eudml.org/doc/116241},
volume = {55},
year = {2005},
}
TY - JOUR
AU - Dickey, Leonid
TI - Proof of the Treves theorem on the KdV hierarchy
JO - Annales de l’institut Fourier
PY - 2005
PB - Association des Annales de l'Institut Fourier
VL - 55
IS - 6
SP - 2015
EP - 2023
AB - A new, shorter, proof of the Treves theorem on an algebraic criterion for the first
integrals of the KdV hierarchy is given, along with an addition to the theorem.
LA - eng
KW - KdV; first integrals; Treves; Treves' criterion
UR - http://eudml.org/doc/116241
ER -
References
top- F. Treves, An algebraic characterization of the Korteweg - de Vries hierarchy., Duke Math. J. 108 (2001), 251-294 Zbl1028.37040MR1833392
- L. A. Dickey, On a generalization of the Treves criterion for the first integrals of the KdV hierarchy to higher GD hierarchies., Lett. Math. Phys. 65 (2003), 187-197 Zbl1042.37050MR2033705
- L. A. Dickey, Soliton Equations and Hamiltonian Systems, 2nd Ed., 26 (2003), World Scientific Zbl1140.35012MR1964513
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.