Page 1 Next

Displaying 1 – 20 of 55

Showing per page

About boundary terms in higher order theories

Lorenzo Fatibene, Mauro Francaviglia, S. Mercadante (2011)

Communications in Mathematics

It is shown that when in a higher order variational principle one fixes fields at the boundary leaving the field derivatives unconstrained, then the variational principle (in particular the solution space) is not invariant with respect to the addition of boundary terms to the action, as it happens instead when the correct procedure is applied. Examples are considered to show how leaving derivatives of fields unconstrained affects the physical interpretation of the model. This is justified in particular...

Almost sure global well-posedness for the radial nonlinear Schrödinger equation on the unit ball II: the 3d case

Jean Bourgain, Aynur Bulut (2014)

Journal of the European Mathematical Society

We extend the convergence method introduced in our works [8–10] for almost sure global well-posedness of Gibbs measure evolutions of the nonlinear Schrödinger (NLS) and nonlinear wave (NLW) equations on the unit ball in d to the case of the three dimensional NLS. This is the first probabilistic global well-posedness result for NLS with supercritical data on the unit ball in 3 . The initial data is taken as a Gaussian random process lying in the support of the Gibbs measure associated to the equation,...

Almost sure well-posedness for the periodic 3D quintic nonlinear Schrödinger equation below the energy space

Andrea R. Nahmod, Gigliola Staffilani (2015)

Journal of the European Mathematical Society

We also prove a long time existence result; more precisely we prove that for fixed T > 0 there exists a set Σ T , ( Σ T ) > 0 such that any data φ ω ( x ) H γ ( 𝕋 3 ) , γ < 1 , ω Σ T , evolves up to time T into a solution u ( t ) with u ( t ) - e i t Δ φ ω C ( [ 0 , T ] ; H s ( 𝕋 3 ) ) , s = s ( γ ) > 1 . In particular we find a nontrivial set of data which gives rise to long time solutions below the critical space H 1 ( 𝕋 3 ) , that is in the supercritical scaling regime.

Backlund-Darboux Transformations in Sato's Grassmannian

Bakalov, B., Horozov, E., Yakimov, M. (1996)

Serdica Mathematical Journal

We define Bäcklund–Darboux transformations in Sato’s Grassmannian. They can be regarded as Darboux transformations on maximal algebras of commuting ordinary differential operators. We describe the action of these transformations on related objects: wave functions, tau-functions and spectral algebras.

Bi-integrable and tri-integrable couplings of a soliton hierarchy associated withSO(4)

Jian Zhang, Chiping Zhang, Yunan Cui (2017)

Open Mathematics

In our paper, the theory of bi-integrable and tri-integrable couplings is generalized to the discrete case. First, based on the six-dimensional real special orthogonal Lie algebra SO(4), we construct bi-integrable and tri-integrable couplings associated with SO(4) for a hierarchy from the enlarged matrix spectral problems and the enlarged zero curvature equations. Moreover, Hamiltonian structures of the obtained bi-integrable and tri-integrable couplings are constructed by the variational identities....

Global existence of solutions to Schrödinger equations on compact riemannian manifolds below H 1

Sijia Zhong (2010)

Bulletin de la Société Mathématique de France

In this paper, we will study global well-posedness for the cubic defocusing nonlinear Schrödinger equations on the compact Riemannian manifold without boundary, below the energy space, i.e. s &lt; 1 , under some bilinear Strichartz assumption. We will find some s ˜ &lt; 1 , such that the solution is global for s &gt; s ˜ .

Currently displaying 1 – 20 of 55

Page 1 Next