Non-intersecting, simple, symmetric random walks and the extended Hahn kernel

Kurt Johansson[1]

  • [1] Royal Institute of Technology, department of mathematics, 100 44 Stockholm (Suède)

Annales de l’institut Fourier (2005)

  • Volume: 55, Issue: 6, page 2129-2145
  • ISSN: 0373-0956

Abstract

top
We show using non-intersecting paths, that a random rhombus tiling of a hexagon, or a boxed planar partition, is described by a determinantal point process given by an extended Hahn kernel.

How to cite

top

Johansson, Kurt. "Non-intersecting, simple, symmetric random walks and the extended Hahn kernel." Annales de l’institut Fourier 55.6 (2005): 2129-2145. <http://eudml.org/doc/116247>.

@article{Johansson2005,
abstract = {We show using non-intersecting paths, that a random rhombus tiling of a hexagon, or a boxed planar partition, is described by a determinantal point process given by an extended Hahn kernel.},
affiliation = {Royal Institute of Technology, department of mathematics, 100 44 Stockholm (Suède)},
author = {Johansson, Kurt},
journal = {Annales de l’institut Fourier},
keywords = {Non-intersecting paths; Dysons's Brownian motion; planar partitions; random tiling; determintal process; non-intersecting paths; Dyson's Brownian motion; tilings; Hahn polynomials; determinantal process},
language = {eng},
number = {6},
pages = {2129-2145},
publisher = {Association des Annales de l'Institut Fourier},
title = {Non-intersecting, simple, symmetric random walks and the extended Hahn kernel},
url = {http://eudml.org/doc/116247},
volume = {55},
year = {2005},
}

TY - JOUR
AU - Johansson, Kurt
TI - Non-intersecting, simple, symmetric random walks and the extended Hahn kernel
JO - Annales de l’institut Fourier
PY - 2005
PB - Association des Annales de l'Institut Fourier
VL - 55
IS - 6
SP - 2129
EP - 2145
AB - We show using non-intersecting paths, that a random rhombus tiling of a hexagon, or a boxed planar partition, is described by a determinantal point process given by an extended Hahn kernel.
LA - eng
KW - Non-intersecting paths; Dysons's Brownian motion; planar partitions; random tiling; determintal process; non-intersecting paths; Dyson's Brownian motion; tilings; Hahn polynomials; determinantal process
UR - http://eudml.org/doc/116247
ER -

References

top
  1. G.E. Andrews, R. Askey, R. Roy, Special Functions, 71 (1999), Cambridge University Press, Cambridge Zbl0920.33001MR1688958
  2. J. Baik, T. Kriecherbauer, K.D.T.-R MacLaughlin, P. Miller, Uniform asymptotics for polynomials orthogonal with respect to a general class of discrete weights and universality results for associated ensembles Zbl1036.42023
  3. H. Cohn, M. Larsen, J. Propp, The shape of a typical boxed plane partition, New York J. of Math. 4 (1998), 137-165 Zbl0908.60083MR1641839
  4. F. J. Dyson, A Brownian-Motion Model for the eigenvalues of a Random Matrix, J. Math. Phys. 3 (1962), 1191-1198 Zbl0111.32703MR148397
  5. B. Eynard, M. L. Mehta, Matrices coupled in a chain I: Eigenvalue correlations, J. of Phys. A 31 (1998), 4449-4456 Zbl0938.15012MR1628667
  6. P. L. Ferrari, H. Spohn, Step fluctuations for a faceted crystal, J. Stat. Phys. 113 (2003), 1-46 Zbl1116.82331MR2012974
  7. P. J. Forrester, T. Nagao, G. Honner, Correlations for the orthogonal-unitary and symplectic-unitary transitions at the soft and hard edges, Nucl. Phys. B 553 (1999), 601-643 Zbl0944.82012MR1707162
  8. K. Holmaker, On a discrete Rodrigues' formula and a second class of orthogonal Hahn polynomials Zbl0417.49034
  9. K. Johansson, Discrete orthogonal polynomial ensembles and the Plancherel measure, Annals of Math. 153 (2001), 259-296 Zbl0984.15020MR1826414
  10. K. Johansson, Non-intersecting paths, random tilings and random matrices, Probab.Theory Relat. Fields 123 (2002), 225-280 Zbl1008.60019MR1900323
  11. K. Johansson, Discrete polynuclear growth and determinantal processes, Commun. Math. Phys. 242 (2003), 277-329 Zbl1031.60084MR2018275
  12. K. Johansson, The Arctic circle and the Airy process Zbl1096.60039MR2118857
  13. M. Katori, H. Tanemura, Scaling limit of vicious walks and two-matrix model, Phys. Rev. E (2002) 
  14. R. Kenyon, Local statistics of lattice dimers, Ann. Inst. H. Poincaré, Probabilités et Statistiques 33 (1997), 591-618 Zbl0893.60047MR1473567
  15. M. L. Mehta, Random Matrices, 2nd ed., (1991), Academic Press, San Diego Zbl0780.60014MR1083764
  16. A. F. Nikiforov, S. K. Suslov, V. B. Uvarov, Classical Orthogonal Polynomials of a Discrete Variable, Berlin Heidelberg (1991), Berlin Heidelberg Zbl0576.33001MR1149380
  17. M. Prähofer, H. Spohn, Scale invariance of the PNG droplet and the Airy process, J. Stat. Phys. 108 (2002), 1076-1106 Zbl1025.82010MR1933446
  18. R. P. Stanley, Enumerative Combinatorics, Cambridge University Press 2 (1999) Zbl0928.05001
  19. J. R. Stembridge, Nonintersecting Paths, Pfaffians, and Plane Partitions, Adv. in Math. 83 (1990), 96-131 Zbl0790.05007MR1069389

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.