The Nekrasov-Okounkov hook length formula: refinement, elementary proof, extension and applications

Guo-Niu Han[1]

  • [1] IRMA, UMR 7501 Université de Strasbourg et CNRS 7 rue René-Descartes 67084 Strasbourg (France)

Annales de l’institut Fourier (2010)

  • Volume: 60, Issue: 1, page 1-29
  • ISSN: 0373-0956

Abstract

top
The paper is devoted to the derivation of the expansion formula for the powers of the Euler Product in terms of partition hook lengths, discovered by Nekrasov and Okounkov in their study of the Seiberg-Witten Theory. We provide a refinement based on a new property of t -cores, and give an elementary proof by using the Macdonald identities. We also obtain an extension by adding two more parameters, which appears to be a discrete interpolation between the Macdonald identities and the generating function for t -cores. Several applications are derived, including the “marked hook formula”.

How to cite

top

Han, Guo-Niu. "The Nekrasov-Okounkov hook length formula: refinement, elementary proof, extension and applications." Annales de l’institut Fourier 60.1 (2010): 1-29. <http://eudml.org/doc/116266>.

@article{Han2010,
abstract = {The paper is devoted to the derivation of the expansion formula for the powers of the Euler Product in terms of partition hook lengths, discovered by Nekrasov and Okounkov in their study of the Seiberg-Witten Theory. We provide a refinement based on a new property of $t$-cores, and give an elementary proof by using the Macdonald identities. We also obtain an extension by adding two more parameters, which appears to be a discrete interpolation between the Macdonald identities and the generating function for $t$-cores. Several applications are derived, including the “marked hook formula”.},
affiliation = {IRMA, UMR 7501 Université de Strasbourg et CNRS 7 rue René-Descartes 67084 Strasbourg (France)},
author = {Han, Guo-Niu},
journal = {Annales de l’institut Fourier},
keywords = {Hook length; hook formula; partition; $t$-core; Euler product; Macdonald identities; hook length; -core; MacDonald identities},
language = {eng},
number = {1},
pages = {1-29},
publisher = {Association des Annales de l’institut Fourier},
title = {The Nekrasov-Okounkov hook length formula: refinement, elementary proof, extension and applications},
url = {http://eudml.org/doc/116266},
volume = {60},
year = {2010},
}

TY - JOUR
AU - Han, Guo-Niu
TI - The Nekrasov-Okounkov hook length formula: refinement, elementary proof, extension and applications
JO - Annales de l’institut Fourier
PY - 2010
PB - Association des Annales de l’institut Fourier
VL - 60
IS - 1
SP - 1
EP - 29
AB - The paper is devoted to the derivation of the expansion formula for the powers of the Euler Product in terms of partition hook lengths, discovered by Nekrasov and Okounkov in their study of the Seiberg-Witten Theory. We provide a refinement based on a new property of $t$-cores, and give an elementary proof by using the Macdonald identities. We also obtain an extension by adding two more parameters, which appears to be a discrete interpolation between the Macdonald identities and the generating function for $t$-cores. Several applications are derived, including the “marked hook formula”.
LA - eng
KW - Hook length; hook formula; partition; $t$-core; Euler product; Macdonald identities; hook length; -core; MacDonald identities
UR - http://eudml.org/doc/116266
ER -

References

top
  1. R. M. Adin, A. Frumkin, Rim Hook Tableaux and Kostant’s η -Function Coefficients, Adv. in Appl. Math. 33 (2004), 492-511 Zbl1056.05144MR2081040
  2. G. E. Andrews, The Theory of Partitions, 2 (1976), Addison-Wesley, Reading Zbl0371.10001MR557013
  3. R. Bacher, L. Manivel, Hooks and Powers of Parts in Partitions, Sém. Lothar. Combin. 47 (2001) Zbl1021.05008MR1894024
  4. A. Berkovich, F. G. Garvan, The BG-rank of a partition and its applications, Adv. in Appl. Math. 40 (2008), 377-400 Zbl1228.11159MR2402176
  5. C. Bessenrodt, On hooks of Young diagrams, Ann. of Comb. 2 (1998), 103-110 Zbl0929.05091MR1682922
  6. E. Carlsson, A. Okounkov, Exts and Vertex Operators, arXiv:0801. 2565v1 [math.AG] Zbl1256.14010
  7. P. Cellini, P. M. Frajria, P. Papi, The W ^ -orbit of ρ , Kostant’s formula for powers of the Euler product and affine Weyl groups as permutations of , J. Pure Appl. Algebra 208 (2007), 1103-1119 Zbl1160.17007MR2283450
  8. F. J. Dyson, Missed opportunities, Bull. Amer. Math. Soc. 78 (1972), 635-652 Zbl0271.01005MR522147
  9. L. Euler, The expansion of the infinite product ( 1 - x ) ( 1 - x x ) ( 1 - x 3 ) ( 1 - x 4 ) ( 1 - x 5 ) ( 1 - x 6 ) etc. into a single series, English translation from the Latin by Jordan Bell 
  10. H. M. Farkas, I. Kra, On the Quintuple Product Identity, Proc. Amer. Math. Soc. 27 (1999), 771-778 Zbl0932.11029MR1487364
  11. D. Foata, G.-N. Han, The triple, quintuple and septuple product identities revisited, Sem. Lothar. Combin. Zbl0923.11143
  12. J. S. Frame, G. de Beauregard Robinson, R. M. Thrall, The hook graphs of the symmetric groups, Canadian J. Math. 6 (1954), 316-324 Zbl0055.25404MR62127
  13. F. Garvan, D. Kim, D. Stanton, Cranks and t -cores, Invent. Math. 101 (1990), 1-17 Zbl0721.11039MR1055707
  14. I. Gessel, G. Viennot, Binomial determinants, paths, and hook length formulae, Adv. in Math. 58 (1985), 300-321 Zbl0579.05004MR815360
  15. C. Greene, A. Nijenhuis, H. S. Wilf, A probabilistic proof of a formula for the number of Young tableaux of a given shape, Adv. in Math. 31 (1979), 104-109 Zbl0398.05008MR521470
  16. G.-N. Han, An explicit expansion formula for the powers of the Euler Product in terms of partition hook lengths, arXiv:0804.1849v2, Math.CO (2008) 
  17. G.-N. Han, Discovering hook length formulas by an expansion technique, Electron. J. Combin., vol. (2008) Zbl1165.05305MR2448883
  18. A. Hoare, M. Howard, An Involution of Blocks in the Partitions of n , Amer. Math. Monthly 93 (1986), 475-476 Zbl0611.10006MR843195
  19. G. James, A. Kerber, The representation theory of the symmetric group, 16 (1981), Addison-Wesley Publishing, Reading, MA Zbl0491.20010MR644144
  20. J. T. Joichi, D. Stanton, An involution for Jacobi’s identity, Discrete Math. 73 (1989), 261-271 Zbl0661.05007MR983024
  21. V. G. Kac, Infinite-dimensional Lie algebras and Dedekind’s η -function, Functional Anal. Appl. 8 (1974), 68-70 Zbl0299.17005MR374210
  22. M. S. Kirdar, T. H. R. Skyrme, On an Identity Related to Partitions and Repetitions of Parts, Canad. J. Math. 34 (1982), 194-195 Zbl0482.10013MR650858
  23. D. E. Knuth, The Art of Computer Programming, 3 (1998), Addison Wesley Longman Zbl0895.65001MR378456
  24. B. Kostant, On Macdonald’s η -function formula, the Laplacian and generalized exponents, Adv. in Math. 20 (1976), 179-212 Zbl0339.10019MR485661
  25. B. Kostant, Powers of the Euler product and commutative subalgebras of a complex simple Lie algebra, Invent. Math. 158 (2004), 181-226 Zbl1076.17002MR2090363
  26. C. Krattenthaler, Another involution principle-free bijective proof of Stanley’s hook-content formula, J. Combin. Theory Ser. A 88 (1999), 66-92 Zbl0936.05087MR1713492
  27. Alain Lascoux, Symmetric functions and combinatorial operators on polynomials, 99 (2003), Published for the Conference Board of the Mathematical Sciences, Washington, DC Zbl1039.05066MR2017492
  28. I. G. Macdonald, Affine root systems and Dedekind’s η -function, Invent. Math. 15 (1972), 91-143 Zbl0244.17005MR357528
  29. I. G. Macdonald, Symmetric Functions and Hall Polynomials, (1995), Clarendon Press, Oxford Zbl0824.05059MR1354144
  30. S. C. Milne, An elementary proof of the Macdonald identities for A l ( 1 ) , Adv. in Math. 57 (1985), 34-70 Zbl0586.33011MR800859
  31. R. V. Moody, Macdonald identities and Euclidean Lie algebras, Proc. Amer. Math. Soc. 48 (1975), 43-52 Zbl0315.17003MR442048
  32. N. A. Nekrasov, A. Okounkov, Seiberg-Witten theory and random partitions. The unity of mathematics, 244 (2006), 525-596, Progr. Math., Birkhaeuser Boston Zbl1233.14029MR2181816
  33. J.-C. Novelli, I. Pak, A. V. Stoyanovskii, A direct bijective proof of the hook-length formula, Discrete Math. Theor. Comput. Sci. 1 (1997), 53-67 Zbl0934.05125MR1605030
  34. J. B. Remmel, R. Whitney, A bijective proof of the hook formula for the number of column strict tableaux with bounded entries, European J. Combin. 4 (1983), 45-63 Zbl0521.05007MR694468
  35. H. Rosengren, M. Schlosser, Elliptic determinant evaluations and the Macdonald identities for affine root systems, Compositio Math. 142 (2006), 937-961 Zbl1104.15009MR2249536
  36. J.-P. Serre, Cours d’arithmétique, (1970), 2 Presses Universitaires de France, Paris Zbl0225.12002MR255476
  37. N. Sloane, al., The On-Line Encyclopedia of Integer Sequences Zbl1044.11108
  38. R. P. Stanley, Errata and Addenda to Enumerative Combinatorics Volume 1, Second Printing, version of 25 April 2008 
  39. R. P. Stanley, Enumerative Combinatorics, 2 (1999), Cambridge university press Zbl0928.05001MR1676282
  40. D.-N. Verma, Review of the paper “Affine root systems and Dedekind’s η -function" written by Macdonald, I. G., MR0357528(50#9996), MathSciNet, 7 pages 
  41. E. W. Weisstein, Elder’s Theorem, from MathWorld – A Wolfram Web Resource 
  42. E. W. Weisstein, Stanley’s Theorem, from MathWorld – A Wolfram Web Resource 
  43. L. Winquist, An elementary proof of p ( 11 m + 6 ) 0 ( mod 11 ) , J. Combinatorial Theory 6 (1969), 56-59 Zbl0241.05006MR236136
  44. D. Zeilberger, A short hook-lengths bijection inspired by the Greene-Nijenhuis-Wilf proof, Discrete Math. 51 (1984), 101-108 Zbl0551.05010MR755045

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.