The Nekrasov-Okounkov hook length formula: refinement, elementary proof, extension and applications
Guo-Niu Han[1]
- [1] IRMA, UMR 7501 Université de Strasbourg et CNRS 7 rue René-Descartes 67084 Strasbourg (France)
Annales de l’institut Fourier (2010)
- Volume: 60, Issue: 1, page 1-29
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topHan, Guo-Niu. "The Nekrasov-Okounkov hook length formula: refinement, elementary proof, extension and applications." Annales de l’institut Fourier 60.1 (2010): 1-29. <http://eudml.org/doc/116266>.
@article{Han2010,
abstract = {The paper is devoted to the derivation of the expansion formula for the powers of the Euler Product in terms of partition hook lengths, discovered by Nekrasov and Okounkov in their study of the Seiberg-Witten Theory. We provide a refinement based on a new property of $t$-cores, and give an elementary proof by using the Macdonald identities. We also obtain an extension by adding two more parameters, which appears to be a discrete interpolation between the Macdonald identities and the generating function for $t$-cores. Several applications are derived, including the “marked hook formula”.},
affiliation = {IRMA, UMR 7501 Université de Strasbourg et CNRS 7 rue René-Descartes 67084 Strasbourg (France)},
author = {Han, Guo-Niu},
journal = {Annales de l’institut Fourier},
keywords = {Hook length; hook formula; partition; $t$-core; Euler product; Macdonald identities; hook length; -core; MacDonald identities},
language = {eng},
number = {1},
pages = {1-29},
publisher = {Association des Annales de l’institut Fourier},
title = {The Nekrasov-Okounkov hook length formula: refinement, elementary proof, extension and applications},
url = {http://eudml.org/doc/116266},
volume = {60},
year = {2010},
}
TY - JOUR
AU - Han, Guo-Niu
TI - The Nekrasov-Okounkov hook length formula: refinement, elementary proof, extension and applications
JO - Annales de l’institut Fourier
PY - 2010
PB - Association des Annales de l’institut Fourier
VL - 60
IS - 1
SP - 1
EP - 29
AB - The paper is devoted to the derivation of the expansion formula for the powers of the Euler Product in terms of partition hook lengths, discovered by Nekrasov and Okounkov in their study of the Seiberg-Witten Theory. We provide a refinement based on a new property of $t$-cores, and give an elementary proof by using the Macdonald identities. We also obtain an extension by adding two more parameters, which appears to be a discrete interpolation between the Macdonald identities and the generating function for $t$-cores. Several applications are derived, including the “marked hook formula”.
LA - eng
KW - Hook length; hook formula; partition; $t$-core; Euler product; Macdonald identities; hook length; -core; MacDonald identities
UR - http://eudml.org/doc/116266
ER -
References
top- R. M. Adin, A. Frumkin, Rim Hook Tableaux and Kostant’s -Function Coefficients, Adv. in Appl. Math. 33 (2004), 492-511 Zbl1056.05144MR2081040
- G. E. Andrews, The Theory of Partitions, 2 (1976), Addison-Wesley, Reading Zbl0371.10001MR557013
- R. Bacher, L. Manivel, Hooks and Powers of Parts in Partitions, Sém. Lothar. Combin. 47 (2001) Zbl1021.05008MR1894024
- A. Berkovich, F. G. Garvan, The BG-rank of a partition and its applications, Adv. in Appl. Math. 40 (2008), 377-400 Zbl1228.11159MR2402176
- C. Bessenrodt, On hooks of Young diagrams, Ann. of Comb. 2 (1998), 103-110 Zbl0929.05091MR1682922
- E. Carlsson, A. Okounkov, Exts and Vertex Operators, arXiv:0801. 2565v1 [math.AG] Zbl1256.14010
- P. Cellini, P. M. Frajria, P. Papi, The -orbit of , Kostant’s formula for powers of the Euler product and affine Weyl groups as permutations of , J. Pure Appl. Algebra 208 (2007), 1103-1119 Zbl1160.17007MR2283450
- F. J. Dyson, Missed opportunities, Bull. Amer. Math. Soc. 78 (1972), 635-652 Zbl0271.01005MR522147
- L. Euler, The expansion of the infinite product etc. into a single series, English translation from the Latin by Jordan Bell
- H. M. Farkas, I. Kra, On the Quintuple Product Identity, Proc. Amer. Math. Soc. 27 (1999), 771-778 Zbl0932.11029MR1487364
- D. Foata, G.-N. Han, The triple, quintuple and septuple product identities revisited, Sem. Lothar. Combin. Zbl0923.11143
- J. S. Frame, G. de Beauregard Robinson, R. M. Thrall, The hook graphs of the symmetric groups, Canadian J. Math. 6 (1954), 316-324 Zbl0055.25404MR62127
- F. Garvan, D. Kim, D. Stanton, Cranks and -cores, Invent. Math. 101 (1990), 1-17 Zbl0721.11039MR1055707
- I. Gessel, G. Viennot, Binomial determinants, paths, and hook length formulae, Adv. in Math. 58 (1985), 300-321 Zbl0579.05004MR815360
- C. Greene, A. Nijenhuis, H. S. Wilf, A probabilistic proof of a formula for the number of Young tableaux of a given shape, Adv. in Math. 31 (1979), 104-109 Zbl0398.05008MR521470
- G.-N. Han, An explicit expansion formula for the powers of the Euler Product in terms of partition hook lengths, arXiv:0804.1849v2, Math.CO (2008)
- G.-N. Han, Discovering hook length formulas by an expansion technique, Electron. J. Combin., vol. (2008) Zbl1165.05305MR2448883
- A. Hoare, M. Howard, An Involution of Blocks in the Partitions of , Amer. Math. Monthly 93 (1986), 475-476 Zbl0611.10006MR843195
- G. James, A. Kerber, The representation theory of the symmetric group, 16 (1981), Addison-Wesley Publishing, Reading, MA Zbl0491.20010MR644144
- J. T. Joichi, D. Stanton, An involution for Jacobi’s identity, Discrete Math. 73 (1989), 261-271 Zbl0661.05007MR983024
- V. G. Kac, Infinite-dimensional Lie algebras and Dedekind’s -function, Functional Anal. Appl. 8 (1974), 68-70 Zbl0299.17005MR374210
- M. S. Kirdar, T. H. R. Skyrme, On an Identity Related to Partitions and Repetitions of Parts, Canad. J. Math. 34 (1982), 194-195 Zbl0482.10013MR650858
- D. E. Knuth, The Art of Computer Programming, 3 (1998), Addison Wesley Longman Zbl0895.65001MR378456
- B. Kostant, On Macdonald’s -function formula, the Laplacian and generalized exponents, Adv. in Math. 20 (1976), 179-212 Zbl0339.10019MR485661
- B. Kostant, Powers of the Euler product and commutative subalgebras of a complex simple Lie algebra, Invent. Math. 158 (2004), 181-226 Zbl1076.17002MR2090363
- C. Krattenthaler, Another involution principle-free bijective proof of Stanley’s hook-content formula, J. Combin. Theory Ser. A 88 (1999), 66-92 Zbl0936.05087MR1713492
- Alain Lascoux, Symmetric functions and combinatorial operators on polynomials, 99 (2003), Published for the Conference Board of the Mathematical Sciences, Washington, DC Zbl1039.05066MR2017492
- I. G. Macdonald, Affine root systems and Dedekind’s -function, Invent. Math. 15 (1972), 91-143 Zbl0244.17005MR357528
- I. G. Macdonald, Symmetric Functions and Hall Polynomials, (1995), Clarendon Press, Oxford Zbl0824.05059MR1354144
- S. C. Milne, An elementary proof of the Macdonald identities for , Adv. in Math. 57 (1985), 34-70 Zbl0586.33011MR800859
- R. V. Moody, Macdonald identities and Euclidean Lie algebras, Proc. Amer. Math. Soc. 48 (1975), 43-52 Zbl0315.17003MR442048
- N. A. Nekrasov, A. Okounkov, Seiberg-Witten theory and random partitions. The unity of mathematics, 244 (2006), 525-596, Progr. Math., Birkhaeuser Boston Zbl1233.14029MR2181816
- J.-C. Novelli, I. Pak, A. V. Stoyanovskii, A direct bijective proof of the hook-length formula, Discrete Math. Theor. Comput. Sci. 1 (1997), 53-67 Zbl0934.05125MR1605030
- J. B. Remmel, R. Whitney, A bijective proof of the hook formula for the number of column strict tableaux with bounded entries, European J. Combin. 4 (1983), 45-63 Zbl0521.05007MR694468
- H. Rosengren, M. Schlosser, Elliptic determinant evaluations and the Macdonald identities for affine root systems, Compositio Math. 142 (2006), 937-961 Zbl1104.15009MR2249536
- J.-P. Serre, Cours d’arithmétique, (1970), 2 Presses Universitaires de France, Paris Zbl0225.12002MR255476
- N. Sloane, al., The On-Line Encyclopedia of Integer Sequences Zbl1044.11108
- R. P. Stanley, Errata and Addenda to Enumerative Combinatorics Volume 1, Second Printing, version of 25 April 2008
- R. P. Stanley, Enumerative Combinatorics, 2 (1999), Cambridge university press Zbl0928.05001MR1676282
- D.-N. Verma, Review of the paper “Affine root systems and Dedekind’s -function" written by Macdonald, I. G., MR0357528(50#9996), MathSciNet, 7 pages
- E. W. Weisstein, Elder’s Theorem, from MathWorld – A Wolfram Web Resource
- E. W. Weisstein, Stanley’s Theorem, from MathWorld – A Wolfram Web Resource
- L. Winquist, An elementary proof of , J. Combinatorial Theory 6 (1969), 56-59 Zbl0241.05006MR236136
- D. Zeilberger, A short hook-lengths bijection inspired by the Greene-Nijenhuis-Wilf proof, Discrete Math. 51 (1984), 101-108 Zbl0551.05010MR755045
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.