# A direct bijective proof of the hook-length formula.

Novelli, Jean-Christophe; Pak, Igor; Stoyanovskii, Alexander V.

Discrete Mathematics and Theoretical Computer Science. DMTCS [electronic only] (1997)

- Volume: 1, Issue: 1, page 53-67
- ISSN: 1365-8050

## Access Full Article

top## How to cite

topNovelli, Jean-Christophe, Pak, Igor, and Stoyanovskii, Alexander V.. "A direct bijective proof of the hook-length formula.." Discrete Mathematics and Theoretical Computer Science. DMTCS [electronic only] 1.1 (1997): 53-67. <http://eudml.org/doc/120185>.

@article{Novelli1997,

author = {Novelli, Jean-Christophe, Pak, Igor, Stoyanovskii, Alexander V.},

journal = {Discrete Mathematics and Theoretical Computer Science. DMTCS [electronic only]},

keywords = {inverse algorithms; hook-length formula; number of standard Young tableaux; jeu de taquin; plane partitions},

language = {eng},

number = {1},

pages = {53-67},

publisher = {Maison de l'Informatique et des Mathématiques Discrètes, MIMD},

title = {A direct bijective proof of the hook-length formula.},

url = {http://eudml.org/doc/120185},

volume = {1},

year = {1997},

}

TY - JOUR

AU - Novelli, Jean-Christophe

AU - Pak, Igor

AU - Stoyanovskii, Alexander V.

TI - A direct bijective proof of the hook-length formula.

JO - Discrete Mathematics and Theoretical Computer Science. DMTCS [electronic only]

PY - 1997

PB - Maison de l'Informatique et des Mathématiques Discrètes, MIMD

VL - 1

IS - 1

SP - 53

EP - 67

LA - eng

KW - inverse algorithms; hook-length formula; number of standard Young tableaux; jeu de taquin; plane partitions

UR - http://eudml.org/doc/120185

ER -

## Citations in EuDML Documents

top## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.