A direct bijective proof of the hook-length formula.
Novelli, Jean-Christophe; Pak, Igor; Stoyanovskii, Alexander V.
Discrete Mathematics and Theoretical Computer Science. DMTCS [electronic only] (1997)
- Volume: 1, Issue: 1, page 53-67
- ISSN: 1365-8050
Access Full Article
topHow to cite
topNovelli, Jean-Christophe, Pak, Igor, and Stoyanovskii, Alexander V.. "A direct bijective proof of the hook-length formula.." Discrete Mathematics and Theoretical Computer Science. DMTCS [electronic only] 1.1 (1997): 53-67. <http://eudml.org/doc/120185>.
@article{Novelli1997,
	author = {Novelli, Jean-Christophe, Pak, Igor, Stoyanovskii, Alexander V.},
	journal = {Discrete Mathematics and Theoretical Computer Science. DMTCS [electronic only]},
	keywords = {inverse algorithms; hook-length formula; number of standard Young tableaux; jeu de taquin; plane partitions},
	language = {eng},
	number = {1},
	pages = {53-67},
	publisher = {Maison de l'Informatique et des Mathématiques Discrètes, MIMD},
	title = {A direct bijective proof of the hook-length formula.},
	url = {http://eudml.org/doc/120185},
	volume = {1},
	year = {1997},
}
TY  - JOUR
AU  - Novelli, Jean-Christophe
AU  - Pak, Igor
AU  - Stoyanovskii, Alexander V.
TI  - A direct bijective proof of the hook-length formula.
JO  - Discrete Mathematics and Theoretical Computer Science. DMTCS [electronic only]
PY  - 1997
PB  - Maison de l'Informatique et des Mathématiques Discrètes, MIMD
VL  - 1
IS  - 1
SP  - 53
EP  - 67
LA  - eng
KW  - inverse algorithms; hook-length formula; number of standard Young tableaux; jeu de taquin; plane partitions
UR  - http://eudml.org/doc/120185
ER  - 
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.
 
 