Fokker-Planck equation in bounded domain
- [1] Université de Lyon INSA de Lyon - Pôle de Mathématiques Institut Camille Jordan - UMR5208 - CNRS 21 av. Jean Capelle 69621 Villeurbanne cedex (France)
Annales de l’institut Fourier (2010)
- Volume: 60, Issue: 1, page 217-255
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topReferences
top- A. Arnold, P. Markowich, G. Toscani, A. Unterreiter, On convex Sobolev Inequalities and the rate of convergence to equilibrium for Fokker-Planck type equations, Communications in Partial Differential Equations 26 (2001), 43-100 Zbl0982.35113MR1842428
- Franck Boyer, Trace theorems and spatial continuity properties for the solutions of the transport equation, Differential Integral Equations 18 (2005), 891-934 Zbl1212.35049MR2150445
- Franck Boyer, Pierre Fabrie, Eléments d’analyse pour l’étude de quelques modèles d’écoulements de fluides visqueux incompressibles, 52 (2006), Springer-Verlag, Berlin Zbl1105.76003MR2248409
- Herm Jan Brascamp, Elliott H. Lieb, On extensions of the Brunn-Minkowski and Prékopa-Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation, J. Functional Analysis 22 (1976), 366-389 Zbl0334.26009MR450480
- L. Chupin, The FENE model for viscoelastic thin film flows: Justification of new models and applications, (2008)
- P. Degond, M. Lemou, M. Picasso, Constitutive relations for viscoelastic fluid models derived from kinetic theory, Dispersive transport equations and multiscale models (Minneapolis, MN, 2000) 136 (2004), 77-89, Springer, New York Zbl1145.76315MR2045232
- J. Droniou, Non-coercive linear elliptic problems, Potential Anal. 17 (2002), 181-203 Zbl1161.35362MR1908676
- J. Droniou, J.-L. Vazquez, Noncoercive convection-diffusion elliptic problems with Neumann boundary conditions, Calc. Var. 34 (2009), 413-434 Zbl1167.35342MR2476418
- DF Escande, F. Sattin, When Can the Fokker-Planck Equation Describe Anomalous or Chaotic Transport?, Physical Review Letters 99 (2007)
- I. Ghosh, G.H. McKinley, R.A. Brown, R.C. Armstrong, Deficiencies of FENE dumbbell models in describing the rapid stretching of dilute polymer solutions, Journal of Rheology 45 (2001)
- J. Guíñez, A. D. Rueda, Steady states for a Fokker-Planck equation on , Acta Math. Hungar. 94 (2002), 211-221 Zbl1007.58013MR1905726
- Juha Heinonen, Tero Kilpeläinen, Olli Martio, Nonlinear potential theory of degenerate elliptic equations, (2006), Dover Publications Inc., Mineola, NY Zbl1115.31001MR2305115
- B. Helffer, F. Nier, Hypoelliptic estimates and spectral theory for Fokker-Planck operators and Witten Laplacians, 1862 (2005), Springer-Verlag, Berlin Zbl1072.35006MR2130405
- Frédéric Hérau, Francis Nier, Isotropic hypoellipticity and trend to equilibrium for the Fokker-Planck equation with a high-degree potential, Arch. Ration. Mech. Anal. 171 (2004), 151-218 Zbl1139.82323MR2034753
- Benjamin Jourdain, Tony Lelièvre, Claude Le Bris, Existence of solution for a micro-macro model of polymeric fluid: the FENE model, J. Funct. Anal. 209 (2004), 162-193 Zbl1047.76004MR2039220
- J. Leray, J. Schauder, Topologie et équations fonctionnelles, Ann. Sci. Éc. Norm. Supér., III. Ser. 51 (1934), 45-78 Zbl0009.07301MR1509338
- A. Lozinski, C. Chauvière, A fast solver for Fokker-Planck equation applied to viscoelastic flows calculations: 2D FENE model, J. Comput. Phys. 189 (2003), 607-625 Zbl1060.82525MR1996059
- N. Masmoudi, Well posedness for the FENE dumbbell model of polymeric flows, (2007) Zbl1157.35088MR2456183
- Guy Métivier, Comportement asymptotique des valeurs propres d’opérateurs elliptiques dégénérés, Journées: Équations aux Dérivées Partielles de Rennes (1975) (1976), 215-249. Astérisque, No. 34-35, Soc. Math. France, Paris Zbl0329.35047MR492952
- A. I. Noarov, Generalized solvability of the stationary Fokker-Planck equation, Differ. Uravn. 43 (2007), 813-819, 863 Zbl1149.35020MR2383830
- Hans Christian Öttinger, Stochastic processes in polymeric fluids, (1996), Springer-Verlag, Berlin Zbl0995.60098MR1383323
- F. Sattin, Fick’s law and Fokker-Planck equation in inhomogeneous environments, Phys. Lett. A 372 (2008), 3941-3945 Zbl1220.82088MR2418394
- Edward W. Stredulinsky, Weighted inequalities and degenerate elliptic partial differential equations, 1074 (1984), Springer-Verlag, Berlin Zbl0541.35001MR757718
- Hans Triebel, Interpolation theory, function spaces, differential operators, (1995), Johann Ambrosius Barth, Heidelberg Zbl0830.46028MR1328645
- Bengt Ove Turesson, Nonlinear potential theory and weighted Sobolev spaces, 1736 (2000), Springer-Verlag, Berlin Zbl0949.31006MR1774162
- E. C. Zeeman, Stability of dynamical systems, Nonlinearity 1 (1988), 115-155 Zbl0643.58005MR928950