Geometric quantization of integrable systems with hyperbolic singularities

Mark D. Hamilton[1]; Eva Miranda[2]

  • [1] Graduate School of Mathematical Sciences University of Tokyo 3-8-1 Komaba Meguro-Ku Tokyo 153-8914 (Japan)
  • [2] Universitat Autònoma de Barcelona 08193 Bellaterra (Spain)

Annales de l’institut Fourier (2010)

  • Volume: 60, Issue: 1, page 51-85
  • ISSN: 0373-0956

Abstract

top
We construct the geometric quantization of a compact surface using a singular real polarization coming from an integrable system. Such a polarization always has singularities, which we assume to be of nondegenerate type. In particular, we compute the effect of hyperbolic singularities, which make an infinite-dimensional contribution to the quantization, thus showing that this quantization depends strongly on polarization.

How to cite

top

Hamilton, Mark D., and Miranda, Eva. "Geometric quantization of integrable systems with hyperbolic singularities." Annales de l’institut Fourier 60.1 (2010): 51-85. <http://eudml.org/doc/116273>.

@article{Hamilton2010,
abstract = {We construct the geometric quantization of a compact surface using a singular real polarization coming from an integrable system. Such a polarization always has singularities, which we assume to be of nondegenerate type. In particular, we compute the effect of hyperbolic singularities, which make an infinite-dimensional contribution to the quantization, thus showing that this quantization depends strongly on polarization.},
affiliation = {Graduate School of Mathematical Sciences University of Tokyo 3-8-1 Komaba Meguro-Ku Tokyo 153-8914 (Japan); Universitat Autònoma de Barcelona 08193 Bellaterra (Spain)},
author = {Hamilton, Mark D., Miranda, Eva},
journal = {Annales de l’institut Fourier},
keywords = {Geometric quantization; integrable system; non-degenerate singularity; geometric quantization; moment map; prequantum line bundle; non-singular Bohr-Sommerfeld leaf},
language = {eng},
number = {1},
pages = {51-85},
publisher = {Association des Annales de l’institut Fourier},
title = {Geometric quantization of integrable systems with hyperbolic singularities},
url = {http://eudml.org/doc/116273},
volume = {60},
year = {2010},
}

TY - JOUR
AU - Hamilton, Mark D.
AU - Miranda, Eva
TI - Geometric quantization of integrable systems with hyperbolic singularities
JO - Annales de l’institut Fourier
PY - 2010
PB - Association des Annales de l’institut Fourier
VL - 60
IS - 1
SP - 51
EP - 85
AB - We construct the geometric quantization of a compact surface using a singular real polarization coming from an integrable system. Such a polarization always has singularities, which we assume to be of nondegenerate type. In particular, we compute the effect of hyperbolic singularities, which make an infinite-dimensional contribution to the quantization, thus showing that this quantization depends strongly on polarization.
LA - eng
KW - Geometric quantization; integrable system; non-degenerate singularity; geometric quantization; moment map; prequantum line bundle; non-singular Bohr-Sommerfeld leaf
UR - http://eudml.org/doc/116273
ER -

References

top
  1. V. I. Arnold, S. M. Gusein-Zade, A. N. Varchenko, Singularities of Differentiable Maps, 1, 2 (1988), Birkhäuser Zbl0659.58002MR966191
  2. A. V. Bolsinov, A. T. Fomenko, Integrable Hamiltonian systems: geometry, topology, classification, (2004), Chapman & Hall/CRC Zbl1056.37075MR2036760
  3. Y. Colin de Verdière, J. Vey, Le lemme de Morse isochore, Topology 18 (1979), 283-293 Zbl0441.58003MR551010
  4. R. H. Cushman, L. M. Bates, Global aspects of classical integrable systems, (1997), Birkhäuser Verlag, Basel Zbl0882.58023MR1438060
  5. J. P. Dufour, P. Molino, A. Toulet, Classification des systèmes intégrables en dimension 2 et invariants des modèles de Fomenko, C. R. Acad. Sci. Paris Sér. I Math. 318 (1994), 949-952 Zbl0808.58025MR1278158
  6. L. H. Eliasson, Normal forms for Hamiltonian systems with Poisson commuting integrals, (1984) Zbl0702.58024
  7. L. H. Eliasson, Normal forms for Hamiltonian systems with Poisson commuting integrals—elliptic case, Comment. Math. Helv. 65 (1990), 4-35 Zbl0702.58024MR1036125
  8. V. Ginzburg, V. Guillemin, Y. Karshon, Moment maps, cobordisms, and Hamiltonian group actions, (2004), AMS Monographs Zbl1197.53002
  9. V. Guillemin, S. Sternberg, The Gel’fand-Cetlin system and quantization of the complex flag manifolds, J. Funct. Anal. 52 (1983), 106-128 Zbl0522.58021MR705993
  10. M. Hamilton, Locally toric manifolds and singular Bohr-Sommerfeld leaves, to appear in , http://arxiv.org/abs/0709.4058 Zbl1201.53088
  11. B. Kostant, On the Definition of Quantization, Géométrie Symplectique et Physique Mathématique, Coll. CNRS, No. 237, Paris (1975), 187-210 Zbl0326.53047MR488137
  12. J. Marsden, T. Ratiu, Introduction to mechanics and symmetry: A basic exposition of classical mechanical systems, 17 (1999), Springer-Verlag, New York Zbl0933.70003MR1723696
  13. J. Milnor, Morse theory, (1963), Princeton University Zbl0108.10401MR163331
  14. E. Miranda, On symplectic linearization of singular Lagrangian foliations, (2003) Zbl1040.53035
  15. E. Miranda, San Vu Ngoc, A singular Poincaré lemma, IMRN 1 (2005), 27-46 Zbl1078.58007MR2130052
  16. H.-J. Petzsche, On E. Borel’s Theorem, Math. Ann. 282 (1988), 299-313 Zbl0633.46033
  17. J. Rawnsley, On the Cohomology Groups of a Polarization and Diagonal quantization, Transaction of the American Mathematical Society 230 (1977), 235-255 Zbl0313.58016MR648775
  18. J. Śniatycki, On Cohomology Groups Appearing in Geometric Quantization, (1975), Differential Geometric Methods in Mathematical Physics Zbl0353.53019
  19. J. Śniatycki, Geometric quantization and quantum mechanics, 30 (1980), Springer-Verlag, New York-Berlin Zbl0429.58007MR554085
  20. J. C. Tougeron, Idéaux de fonctions différentiables, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 71 (1972) Zbl0251.58001MR440598
  21. J. Williamson, On the algebraic problem concerning the normal forms of linear dynamical systems, Amer. J. Math. 58:1 (1936), 141-163 Zbl63.1290.01MR1507138
  22. N. M. J. Woodhouse, Geometric quantization, (1992), Oxford Science Publications, The Clarendon Press, Oxford University Press, New York Zbl0747.58004MR1183739

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.