Geometric quantization of integrable systems with hyperbolic singularities
Mark D. Hamilton[1]; Eva Miranda[2]
- [1] Graduate School of Mathematical Sciences University of Tokyo 3-8-1 Komaba Meguro-Ku Tokyo 153-8914 (Japan)
- [2] Universitat Autònoma de Barcelona 08193 Bellaterra (Spain)
Annales de l’institut Fourier (2010)
- Volume: 60, Issue: 1, page 51-85
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topHamilton, Mark D., and Miranda, Eva. "Geometric quantization of integrable systems with hyperbolic singularities." Annales de l’institut Fourier 60.1 (2010): 51-85. <http://eudml.org/doc/116273>.
@article{Hamilton2010,
abstract = {We construct the geometric quantization of a compact surface using a singular real polarization coming from an integrable system. Such a polarization always has singularities, which we assume to be of nondegenerate type. In particular, we compute the effect of hyperbolic singularities, which make an infinite-dimensional contribution to the quantization, thus showing that this quantization depends strongly on polarization.},
affiliation = {Graduate School of Mathematical Sciences University of Tokyo 3-8-1 Komaba Meguro-Ku Tokyo 153-8914 (Japan); Universitat Autònoma de Barcelona 08193 Bellaterra (Spain)},
author = {Hamilton, Mark D., Miranda, Eva},
journal = {Annales de l’institut Fourier},
keywords = {Geometric quantization; integrable system; non-degenerate singularity; geometric quantization; moment map; prequantum line bundle; non-singular Bohr-Sommerfeld leaf},
language = {eng},
number = {1},
pages = {51-85},
publisher = {Association des Annales de l’institut Fourier},
title = {Geometric quantization of integrable systems with hyperbolic singularities},
url = {http://eudml.org/doc/116273},
volume = {60},
year = {2010},
}
TY - JOUR
AU - Hamilton, Mark D.
AU - Miranda, Eva
TI - Geometric quantization of integrable systems with hyperbolic singularities
JO - Annales de l’institut Fourier
PY - 2010
PB - Association des Annales de l’institut Fourier
VL - 60
IS - 1
SP - 51
EP - 85
AB - We construct the geometric quantization of a compact surface using a singular real polarization coming from an integrable system. Such a polarization always has singularities, which we assume to be of nondegenerate type. In particular, we compute the effect of hyperbolic singularities, which make an infinite-dimensional contribution to the quantization, thus showing that this quantization depends strongly on polarization.
LA - eng
KW - Geometric quantization; integrable system; non-degenerate singularity; geometric quantization; moment map; prequantum line bundle; non-singular Bohr-Sommerfeld leaf
UR - http://eudml.org/doc/116273
ER -
References
top- V. I. Arnold, S. M. Gusein-Zade, A. N. Varchenko, Singularities of Differentiable Maps, 1, 2 (1988), Birkhäuser Zbl0659.58002MR966191
- A. V. Bolsinov, A. T. Fomenko, Integrable Hamiltonian systems: geometry, topology, classification, (2004), Chapman & Hall/CRC Zbl1056.37075MR2036760
- Y. Colin de Verdière, J. Vey, Le lemme de Morse isochore, Topology 18 (1979), 283-293 Zbl0441.58003MR551010
- R. H. Cushman, L. M. Bates, Global aspects of classical integrable systems, (1997), Birkhäuser Verlag, Basel Zbl0882.58023MR1438060
- J. P. Dufour, P. Molino, A. Toulet, Classification des systèmes intégrables en dimension et invariants des modèles de Fomenko, C. R. Acad. Sci. Paris Sér. I Math. 318 (1994), 949-952 Zbl0808.58025MR1278158
- L. H. Eliasson, Normal forms for Hamiltonian systems with Poisson commuting integrals, (1984) Zbl0702.58024
- L. H. Eliasson, Normal forms for Hamiltonian systems with Poisson commuting integrals—elliptic case, Comment. Math. Helv. 65 (1990), 4-35 Zbl0702.58024MR1036125
- V. Ginzburg, V. Guillemin, Y. Karshon, Moment maps, cobordisms, and Hamiltonian group actions, (2004), AMS Monographs Zbl1197.53002
- V. Guillemin, S. Sternberg, The Gel’fand-Cetlin system and quantization of the complex flag manifolds, J. Funct. Anal. 52 (1983), 106-128 Zbl0522.58021MR705993
- M. Hamilton, Locally toric manifolds and singular Bohr-Sommerfeld leaves, to appear in , http://arxiv.org/abs/0709.4058 Zbl1201.53088
- B. Kostant, On the Definition of Quantization, Géométrie Symplectique et Physique Mathématique, Coll. CNRS, No. 237, Paris (1975), 187-210 Zbl0326.53047MR488137
- J. Marsden, T. Ratiu, Introduction to mechanics and symmetry: A basic exposition of classical mechanical systems, 17 (1999), Springer-Verlag, New York Zbl0933.70003MR1723696
- J. Milnor, Morse theory, (1963), Princeton University Zbl0108.10401MR163331
- E. Miranda, On symplectic linearization of singular Lagrangian foliations, (2003) Zbl1040.53035
- E. Miranda, San Vu Ngoc, A singular Poincaré lemma, IMRN 1 (2005), 27-46 Zbl1078.58007MR2130052
- H.-J. Petzsche, On E. Borel’s Theorem, Math. Ann. 282 (1988), 299-313 Zbl0633.46033
- J. Rawnsley, On the Cohomology Groups of a Polarization and Diagonal quantization, Transaction of the American Mathematical Society 230 (1977), 235-255 Zbl0313.58016MR648775
- J. Śniatycki, On Cohomology Groups Appearing in Geometric Quantization, (1975), Differential Geometric Methods in Mathematical Physics Zbl0353.53019
- J. Śniatycki, Geometric quantization and quantum mechanics, 30 (1980), Springer-Verlag, New York-Berlin Zbl0429.58007MR554085
- J. C. Tougeron, Idéaux de fonctions différentiables, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 71 (1972) Zbl0251.58001MR440598
- J. Williamson, On the algebraic problem concerning the normal forms of linear dynamical systems, Amer. J. Math. 58:1 (1936), 141-163 Zbl63.1290.01MR1507138
- N. M. J. Woodhouse, Geometric quantization, (1992), Oxford Science Publications, The Clarendon Press, Oxford University Press, New York Zbl0747.58004MR1183739
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.