Integrable systems and group actions

Eva Miranda

Open Mathematics (2014)

  • Volume: 12, Issue: 2, page 240-270
  • ISSN: 2391-5455

Abstract

top
The main purpose of this paper is to present in a unified approach to different results concerning group actions and integrable systems in symplectic, Poisson and contact manifolds. Rigidity problems for integrable systems in these manifolds will be explored from this perspective.

How to cite

top

Eva Miranda. "Integrable systems and group actions." Open Mathematics 12.2 (2014): 240-270. <http://eudml.org/doc/269684>.

@article{EvaMiranda2014,
abstract = {The main purpose of this paper is to present in a unified approach to different results concerning group actions and integrable systems in symplectic, Poisson and contact manifolds. Rigidity problems for integrable systems in these manifolds will be explored from this perspective.},
author = {Eva Miranda},
journal = {Open Mathematics},
keywords = {Integrable system; Momentum map; Poisson manifold; Contact manifold; Symplectic manifold; Group action; integrable system; momentum map; contact manifold; symplectic manifold; group action},
language = {eng},
number = {2},
pages = {240-270},
title = {Integrable systems and group actions},
url = {http://eudml.org/doc/269684},
volume = {12},
year = {2014},
}

TY - JOUR
AU - Eva Miranda
TI - Integrable systems and group actions
JO - Open Mathematics
PY - 2014
VL - 12
IS - 2
SP - 240
EP - 270
AB - The main purpose of this paper is to present in a unified approach to different results concerning group actions and integrable systems in symplectic, Poisson and contact manifolds. Rigidity problems for integrable systems in these manifolds will be explored from this perspective.
LA - eng
KW - Integrable system; Momentum map; Poisson manifold; Contact manifold; Symplectic manifold; Group action; integrable system; momentum map; contact manifold; symplectic manifold; group action
UR - http://eudml.org/doc/269684
ER -

References

top
  1. [1] Albouy A., Projective dynamics and classical gravitation, Regul. Chaotic Dyn., 2008, 13(6), 525–542 http://dx.doi.org/10.1134/S156035470806004X Zbl1229.70031
  2. [2] Arnol’d V.I., Mathematical Methods of Classical Mechanics, Grad. Texts in Math., 60, Springer, New York-Heidelberg, 1978 http://dx.doi.org/10.1007/978-1-4757-1693-1 
  3. [3] Banyaga A., The geometry surrounding the Arnold-Liouville theorem, In: Advances in Geometry, Progr. Math., 172, Birkhäuser, Boston, 1999 Zbl0933.53035
  4. [4] Banyaga A., Molino P., Géométrie des formes de contact complètement intégrables de type toriques, In: Séminaire Gaston Darboux de Géométrie et Topologie Différentielle, 1991–1992, Montpellier, Université Montpellier II, Montpellier, 1993, 1–25 
  5. [5] Bolsinov A.V., Jovanovic B., Noncommutative integrability, moment map and geodesic flows, Ann. Global Anal. Geom., 2003, 23(4), 305–322 http://dx.doi.org/10.1023/A:1023023300665 Zbl1022.37038
  6. [6] Bolsinov A.V., Matveev V.S., Singularities of momentum maps of integrable Hamiltonian systems with two degrees of freedom, J. Math. Sci. (New York), 1999, 94(4), 1477–1500 http://dx.doi.org/10.1007/BF02365198 
  7. [7] Chaperon M., Quelques outils de la théorie des actions différentiables, In: Third Schnepfenried Geometry Conference, 1, Schnepfenried, May 10–15, 1982, Astérisque, 107–108, Soc. Math. France, Paris, 1983, 259–275 
  8. [8] Chaperon M., Normalisation of the smooth focus-focus: a simple proof, Acta Math. Vietnam., 2013, 38(1), 3–9 http://dx.doi.org/10.1007/s40306-012-0003-y Zbl1273.34043
  9. [9] Chevalley C., Eilenberg S., Cohomology theory of Lie groups and Lie algebras, Trans. Amer. Math. Soc., 1948, 63(1), 85–124 http://dx.doi.org/10.1090/S0002-9947-1948-0024908-8 Zbl0031.24803
  10. [10] Colin de Verdière Y., Singular Lagrangian manifolds and semiclassical analysis, Duke Math. J., 2003, 116(2), 263–298 http://dx.doi.org/10.1215/S0012-7094-03-11623-3 Zbl1074.53066
  11. [11] Colin de Verdière Y., Vey J., Le lemme de Morse isochore, Topology, 1979, 18(4), 283–293 http://dx.doi.org/10.1016/0040-9383(79)90019-3 
  12. [12] Colin de Verdière Y., Vũ Ngoc S., Singular Bohr-Sommerfeld rules for 2D integrable systems, Ann. Sci. Ècole Norm. Sup., 2003, 36(1), 1–55 Zbl1028.81026
  13. [13] Conn J.F., Normal forms for smooth Poisson structures, Ann. of Math., 1985, 121(3), 565–593 http://dx.doi.org/10.2307/1971210 Zbl0592.58025
  14. [14] Currás-Bosch C., Miranda E., Symplectic linearization of singular Lagrangian foliations in M 4, Differential Geom. Appl., 2003, 18(2), 195–205 http://dx.doi.org/10.1016/S0926-2245(02)00147-X Zbl1040.53035
  15. [15] Delzant T., Hamiltoniens périodiques et images convexes de l’application moment, Bull. Soc. Math. France, 1988, 116(3), 315–339 Zbl0676.58029
  16. [16] Dufour J.-P., Molino P., Toulet A., Classification des systèmes intégrables en dimension 2 et invariants des modèles de Fomenko, C. R. Acad. Sci. Paris Sér. I Math., 1994, 318(10), 949–952 Zbl0808.58025
  17. [17] Duistermaat J.J., On global action-angle coordinates, Comm. Pure Appl. Math., 1980, 33(6), 687–706 http://dx.doi.org/10.1002/cpa.3160330602 Zbl0439.58014
  18. [18] Eliasson L.H., Normal Forms for Hamiltonian Systems with Poisson Commuting Integrals, PhD thesis, University of Stockholm, 1984 Zbl0702.58024
  19. [19] Eliasson L.H., Normal forms for Hamiltonian systems with Poisson commuting integrals - elliptic case, Comment. Math. Helv., 1990, 65, 4–35 http://dx.doi.org/10.1007/BF02566590 Zbl0702.58024
  20. [20] Fomenko A.T., Topological classification of all integrable Hamiltonian differential equations of general type with two degrees of freedom, In: The Geometry of Hamiltonian Systems, Berkeley, June 5–16, 1989, Math. Sci. Res. Inst. Publ., 22, Springer, New York, 1991, 131–339 http://dx.doi.org/10.1007/978-1-4613-9725-0_10 
  21. [21] Geiges G., Contact geometry, In: Handbook of Differential Geometry, II, Elsevier/North-Holland, Amsterdam, 2006, 315–382 http://dx.doi.org/10.1016/S1874-5741(06)80008-7 Zbl1147.53068
  22. [22] Gray J.W., Some global properties of contact structures, Ann. of Math., 1959, 69(2), 421–450 http://dx.doi.org/10.2307/1970192 Zbl0092.39301
  23. [23] Guillemin V., Ginzburg V., Karshon Y., Moment Maps, Cobordisms, and Hamiltonian Group Actions, Math. Surveys Monogr., 98, American Mathematical Society, Providence, 2004 Zbl1197.53002
  24. [24] Guillemin V., Miranda E., Pires A.R., Codimension one symplectic foliations and regular Poisson structures, Bull. Braz. Math. Soc. (N.S.), 2011, 42(4), 607–623 http://dx.doi.org/10.1007/s00574-011-0031-6 Zbl1244.53093
  25. [25] Guillemin V., Miranda E., Pires A.R., Symplectic and Poisson geometry on b-manifolds, preprint available at http://arxiv.org/abs/1206.2020 Zbl1296.53159
  26. [26] Guillemin V., Miranda E., Pires A.R., Scott G., Toric actions on b-symplectic manifolds, preprint available at http://arxiv.org/abs/1309.1897 Zbl1333.53115
  27. [27] Guillemin V., Schaeffer D., On a certain class of Fuchsian partial differential equations, Duke Math. J., 1977, 44(1), 157–199 http://dx.doi.org/10.1215/S0012-7094-77-04408-8 Zbl0356.35080
  28. [28] Guillemin V.W., Sternberg S., Remarks on a paper of Hermann, Trans. Amer. Math. Soc., 1968, 130(1), 110–116 http://dx.doi.org/10.1090/S0002-9947-1968-0217226-9 Zbl0155.05701
  29. [29] Guillemin V., Sternberg S., The Gel’fand-Cetlin system and quantization of the complex flag manifolds, J. Funct. Anal., 1983, 52(1), 106–128 http://dx.doi.org/10.1016/0022-1236(83)90092-7 Zbl0522.58021
  30. [30] Hamilton M.D., Miranda E., Geometric quantization of integrable systems with hyperbolic singularities, Ann. Inst. Fourier (Grenoble), 2010, 60(1), 51–85 http://dx.doi.org/10.5802/aif.2517 Zbl1191.53058
  31. [31] Ito H., Action-angle coordinates at singularities for analytic integrable systems, Math. Z., 1991, 206(3), 363–407 http://dx.doi.org/10.1007/BF02571351 Zbl0707.58026
  32. [32] Karshon Y., Tolman S., Centered complexity one Hamiltonian torus actions, Trans. Amer. Math. Soc., 2001, 353(12), 4831–4861 http://dx.doi.org/10.1090/S0002-9947-01-02799-4 Zbl0992.53062
  33. [33] Khesin B., Tabaschnikov S., Contact complete integrability, Regul. Chaotic Dyn., 2010, 15(4–5), 504–520 http://dx.doi.org/10.1134/S1560354710040076 
  34. [34] Knörrer H., Geodesics on quadrics and a mechanical problem of C. Neumann, J. Reine Angew. Math., 1982, 334, 69–78 
  35. [35] Kostant B., On the definition of quantization, In: Géométrie Symplectique et Physique Mathématique, Colloq. Internat. CNRS, 237, Éditions Centre Nat. Recherche Sci., Paris, 1975, 187–210 
  36. [36] Kruglikov B.S., Matveev V.S., Vanishing of the entropy pseudonorm for certain integrable systems, Electron. Res. Announc. Amer. Math. Soc., 2006, 12, 19–28 http://dx.doi.org/10.1090/S1079-6762-06-00156-9 Zbl1186.37067
  37. [37] Laurent-Gengoux C., Miranda E., Coupling symmetries with Poisson structures, Acta Math. Vietnam., 2013, 38(1), 21–32 http://dx.doi.org/10.1007/s40306-013-0008-1 Zbl1271.53074
  38. [38] Laurent-Gengoux C., Miranda E., Splitting theorem and integrable systems in Poisson manifolds (in preparation) Zbl1222.53087
  39. [39] Laurent-Gengoux C., Miranda E., Vanhaecke P., Action-angle coordinates for integrable systems on Poisson manifolds, Int. Math. Res. Not. IMRN, 2011, 8, 1839–1869 Zbl1222.53087
  40. [40] Lerman E., Contact toric manifolds, J. Symplectic Geom., 2003, 1(4), 785–828 http://dx.doi.org/10.4310/JSG.2001.v1.n4.a6 Zbl1079.53118
  41. [41] Lerman E., Tolman S., Hamiltonian torus actions on symplectic orbifolds and toric varieties, Trans. Amer. Math. Soc., 1997, 349(10), 4201–4230 http://dx.doi.org/10.1090/S0002-9947-97-01821-7 Zbl0897.58016
  42. [42] Libermann P., Legendre foliations on contact manifolds, Differential Geom. Appl., 1991, 1(1), 57–76 http://dx.doi.org/10.1016/0926-2245(91)90022-2 
  43. [43] Liouville J., Note sur l’intégration des équations différentielles de la dynamique, J. Math. Pures Appl., 1855, 20, 137–138 
  44. [44] Lutz R., Sur la géométrie des structures de contact invariantes, Ann. Inst. Fourier (Grenoble), 1979, 29(1), 283–306 http://dx.doi.org/10.5802/aif.739 Zbl0379.53011
  45. [45] Matveev V.S., Integrable Hamiltonian systems with two degrees of freedom. Topological structure of saturated neighborhoods of points of focus-focus and saddle-saddle types, Sb. Math., 1996, 187(4), 495–524 http://dx.doi.org/10.1070/SM1996v187n04ABEH000122 Zbl0871.58045
  46. [46] Mineur H., Réduction des systèmes mécaniques à n degrés de liberté admettant n intégrales premières uniformes en involution aux systèmes à variable séparées, J. Math. Pures Appl., 1936, 15, 385–389 Zbl62.1513.02
  47. [47] Mineur H., Sur les systèmes mécaniques dans lesquels figurent des paramètres fonctions du temps. Étude des systèmes admettant n intégrales premieres uniformes en involution. Extension à ces systèmes des conditions de quantification de Bohr-Sommerfeld, Le Journal de l’École Polytechnique, 1937, 143, 237–270 Zbl0017.04105
  48. [48] Miranda E., On Symplectic Linearization of Singular Lagrangian Foliations, PhD thesis, Universitat de Barcelona, 2003 Zbl1040.53035
  49. [49] Miranda E., A normal form theorem for integrable systems on contact manifolds, In: Proceedings of XIII Fall Workshop on Geometry and Physics, Murcia, September 20–22, 2004, Publ. R. Soc. Mat. Esp., 9, Real Sociedad Matemàtica Española, Madrid, 2005, 240–246 
  50. [50] Miranda E., Some rigidity results for symplectic and Poisson group actions, In: XV International Workshop on Geometry and Physics, Puerto de la Cruz, September 11–16, 2006, Publ. R. Soc. Mat. Esp., 11, Real Sociedad Matemàtica Española, Madrid, 2007, 177–183 
  51. [51] Miranda E., From action-angle coordinates to geometric quantization: a 30 minute round-trip, In: Geometric Quantization in the Non-Compact Setting, Oberwolfach, February 13–19, 2011, Oberwolfach Rep., 2011, 8(1), 425–521 
  52. [52] Miranda E., Symplectic linearization of semisimple Lie algebra actions, manuscript 
  53. [53] Miranda E., Symplectic equivalence of non-degenerate integrable systems (in preparation) 
  54. [54] Miranda E., Monnier P., Zung N.T., Rigidity of Hamiltonian actions on Poisson manifolds, Adv. Math., 2012, 229(2), 1136–1179 http://dx.doi.org/10.1016/j.aim.2011.09.013 Zbl1232.53071
  55. [55] Miranda E., Vũ Ngoc S., A singular Poincaré lemma, Int. Math. Res. Not., 2005, 1, 27–45 http://dx.doi.org/10.1155/IMRN.2005.27 Zbl1078.58007
  56. [56] Miranda E., Zung N.T., Equivariant normal form for nondegenerate singular orbits of integrable Hamiltonian systems, Ann. Sci. École Norm. Sup., 2004, 37(6), 819–839 Zbl1068.37041
  57. [57] Miranda E., Zung N.T., A note on equivariant normal forms of Poisson structures, Math. Res. Lett., 2006, 13(5–6), 1001–1012 http://dx.doi.org/10.4310/MRL.2006.v13.n6.a14 Zbl1112.53062
  58. [58] Nest R., Tsygan B., Formal deformations of symplectic manifolds with boundary, J. Reine Angew. Math., 1996, 481, 27–54 Zbl0866.58038
  59. [59] Palais R.S., On the existence of slices for actions of non-compact Lie groups, Ann. of Math., 1961, 73, 295–323 http://dx.doi.org/10.2307/1970335 Zbl0103.01802
  60. [60] Paternain G.P., On the topology of manifolds with completely integrable geodesic flows. II, J. Geom. Phys., 1994, 13(2), 289–298 http://dx.doi.org/10.1016/0393-0440(94)90036-1 
  61. [61] Pelayo A., Vũ Ngoc S., Semitoric integrable systems on symplectic 4-manifolds, Invent. Math., 2009, 177(3), 571–597 http://dx.doi.org/10.1007/s00222-009-0190-x Zbl1215.53071
  62. [62] Pelayo Á., Vũ Ngoc S., Constructing integrable systems of semitoric type, Acta Math., 2011, 206(1), 93–125 http://dx.doi.org/10.1007/s11511-011-0060-4 Zbl1225.53074
  63. [63] Sniatycki J., On cohomology groups appearing in geometric quantization, In: Differential Geometric Methods in Mathematical Physics, Bonn, July 1–4, 1975, Lecture Notes in Math., 570, Springer, Berlin, 1977, 46–66 http://dx.doi.org/10.1007/BFb0087781 
  64. [64] Vey J., Sur le lemme de Morse, Invent. Math., 1977, 40(1), 1–9 http://dx.doi.org/10.1007/BF01389858 
  65. [65] Vũ Ngoc S., On semi-global invariants for focus-focus singularities, Topology, 2003, 42(2), 365–380 http://dx.doi.org/10.1016/S0040-9383(01)00026-X Zbl1012.37041
  66. [66] Vũ Ngoc S., Wacheux C., Smooth normal forms for integrable Hamiltonian systems near a focus-focus singularity, Acta Math. Vietnam., 2013, 38(1), 107–122 http://dx.doi.org/10.1007/s40306-013-0012-5 Zbl1303.37018
  67. [67] Weinstein A., Lectures on symplectic manifolds, CBMS Regional Conf. Ser. in Math., 29, American Mathematical Society, Providence, 1977 Zbl0406.53031
  68. [68] Weinstein A., The local structure of Poisson manifolds, J. Differential Geom., 1983, 18(3), 523–557 Zbl0524.58011
  69. [69] Williamson J., On the algebraic problem concerning the normal forms of linear dynamical systems, Amer. J. Math., 1936, 58(1), 141–163 http://dx.doi.org/10.2307/2371062 Zbl63.1290.01
  70. [70] Woodhouse N.M.J., Geometric quantization, 2nd ed., Oxford Math. Monogr., Clarendon Press, Oxford University Press, New York, 1992 Zbl0747.58004
  71. [71] Zung N.T., Symplectic topology of integrable Hamiltonian systems I. Arnold-Liouville with singularities, Compositio Math., 1996, 101(2), 179–215 Zbl0936.37042
  72. [72] Zung N.T., Symplectic topology of integrable Hamiltonian systems II. Topological classification, Compositio Math., 2003, 138(2), 125–156 http://dx.doi.org/10.1023/A:1026133814607 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.