Liouville-type theorems for foliations with complex leaves
- [1] Institut fuer Mathematik Nordbergstrasse 15 1090 Wien (Autriche)
Annales de l’institut Fourier (2010)
- Volume: 60, Issue: 2, page 711-725
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topDella Sala, Giuseppe. "Liouville-type theorems for foliations with complex leaves." Annales de l’institut Fourier 60.2 (2010): 711-725. <http://eudml.org/doc/116286>.
@article{DellaSala2010,
abstract = {In this paper we discuss various problems regarding the structure of the foliation of some foliated submanifolds $S$ of $\mathbb\{C\}^n$, in particular Levi flat ones. As a general scheme, we suppose that $S$ is bounded along a coordinate (or a subset of coordinates), and prove that the complex leaves of its foliation are planes.},
affiliation = {Institut fuer Mathematik Nordbergstrasse 15 1090 Wien (Autriche)},
author = {Della Sala, Giuseppe},
journal = {Annales de l’institut Fourier},
keywords = {Levi flat submanifolds; Liouville theorem; analytic multifunctions; analytic foliations; foliated hypersurface; Levi flat submanifold},
language = {eng},
number = {2},
pages = {711-725},
publisher = {Association des Annales de l’institut Fourier},
title = {Liouville-type theorems for foliations with complex leaves},
url = {http://eudml.org/doc/116286},
volume = {60},
year = {2010},
}
TY - JOUR
AU - Della Sala, Giuseppe
TI - Liouville-type theorems for foliations with complex leaves
JO - Annales de l’institut Fourier
PY - 2010
PB - Association des Annales de l’institut Fourier
VL - 60
IS - 2
SP - 711
EP - 725
AB - In this paper we discuss various problems regarding the structure of the foliation of some foliated submanifolds $S$ of $\mathbb{C}^n$, in particular Levi flat ones. As a general scheme, we suppose that $S$ is bounded along a coordinate (or a subset of coordinates), and prove that the complex leaves of its foliation are planes.
LA - eng
KW - Levi flat submanifolds; Liouville theorem; analytic multifunctions; analytic foliations; foliated hypersurface; Levi flat submanifold
UR - http://eudml.org/doc/116286
ER -
References
top- D. E. Barrett, J. E. Fornæss, On the smoothness of Levi-foliations, Publ. Mat. 32 (1988), 171-177 Zbl0663.32014MR975896
- David E. Barrett, Takashi Inaba, On the topology of compact smooth three-dimensional Levi-flat hypersurfaces, J. Geom. Anal. 2 (1992), 489-497 Zbl0762.32014MR1189041
- Robert L. Bryant, Levi-flat minimal hypersurfaces in two-dimensional complex space forms, Lie groups, geometric structures and differential equations—one hundred years after Sophus Lie (Kyoto/Nara, 1999) 37 (2002), 1-44, Math. Soc. Japan, Tokyo Zbl1075.53524MR1980895
- John Erik Fornaess, Edgar Lee Stout, Polydiscs in complex manifolds, Math. Ann. 227 (1977), 145-153 Zbl0331.32007MR435441
- Alcides Lins Neto, A note on projective Levi flats and minimal sets of algebraic foliations, Ann. Inst. Fourier (Grenoble) 49 (1999), 1369-1385 Zbl0963.32022MR1703092
- Guido Lupacciolu, Giuseppe Tomassini, An extension theorem for CR-functions, Ann. Mat. Pura Appl. (4) 137 (1984), 257-263 Zbl0569.32009MR772261
- Takeo Ohsawa, On the Levi-flats in complex tori of dimension two, Publ. Res. Inst. Math. Sci. 42 (2006), 361-377 Zbl1141.32016MR2250063
- Kiyosi Oka, Note sur les familles de fonctions analytiques multiformes, J. Sci. Hiroshima Univ. Ser. A 4 (1934), 93-98 Zbl0011.31403
- Charles C. Pugh, The Morse-Sard theorem with mixed differentiability, Indiana Univ. Math. J. 40 (1991), 1387-1396 Zbl0791.58022MR1142720
- Thomas Ransford, A new approach to analytic multifunctions, Set-Valued Anal. 7 (1999), 159-194 Zbl0994.30029MR1716030
- N. V. Shcherbina, On the polynomial hull of a graph, Indiana Univ. Math. J. 42 (1993), 477-503 Zbl0798.32026MR1237056
- Yum-Tong Siu, Nonexistence of smooth Levi-flat hypersurfaces in complex projective spaces of dimension , Ann. of Math. (2) 151 (2000), 1217-1243 Zbl0980.53065MR1779568
- Zbigniew Slodkowski, Analytic set-valued functions and spectra, Math. Ann. 256 (1981), 363-386 Zbl0452.46028MR626955
- Gabriel Stolzenberg, Uniform approximation on smooth curves, Acta Math. 115 (1966), 185-198 Zbl0143.30005MR192080
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.