A new Lagrangian dynamic reduction in field theory
François Gay-Balmaz[1]; Tudor S. Ratiu[1]
- [1] École Polytechnique Fédérale de Lausanne Section de Mathématiques Station 8 1015 Lausanne (Switzerland)
Annales de l’institut Fourier (2010)
- Volume: 60, Issue: 3, page 1125-1160
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topGay-Balmaz, François, and Ratiu, Tudor S.. "A new Lagrangian dynamic reduction in field theory." Annales de l’institut Fourier 60.3 (2010): 1125-1160. <http://eudml.org/doc/116291>.
@article{Gay2010,
abstract = {For symmetric classical field theories on principal bundles there are two methods of symmetry reduction: covariant and dynamic. Assume that the classical field theory is given by a symmetric covariant Lagrangian density defined on the first jet bundle of a principal bundle. It is shown that covariant and dynamic reduction lead to equivalent equations of motion. This is achieved by constructing a new Lagrangian defined on an infinite dimensional space which turns out to be gauge group invariant.},
affiliation = {École Polytechnique Fédérale de Lausanne Section de Mathématiques Station 8 1015 Lausanne (Switzerland); École Polytechnique Fédérale de Lausanne Section de Mathématiques Station 8 1015 Lausanne (Switzerland)},
author = {Gay-Balmaz, François, Ratiu, Tudor S.},
journal = {Annales de l’institut Fourier},
keywords = {Covariant reduction; dynamic reduction; affine Euler-Poincaré equation; covariant Euler-Poincaré equation; Lagrangian; principal bundle field theory; covariant reduction; affine Euler-Poincaré equation; covariant Euler-Poincaré equation},
language = {eng},
number = {3},
pages = {1125-1160},
publisher = {Association des Annales de l’institut Fourier},
title = {A new Lagrangian dynamic reduction in field theory},
url = {http://eudml.org/doc/116291},
volume = {60},
year = {2010},
}
TY - JOUR
AU - Gay-Balmaz, François
AU - Ratiu, Tudor S.
TI - A new Lagrangian dynamic reduction in field theory
JO - Annales de l’institut Fourier
PY - 2010
PB - Association des Annales de l’institut Fourier
VL - 60
IS - 3
SP - 1125
EP - 1160
AB - For symmetric classical field theories on principal bundles there are two methods of symmetry reduction: covariant and dynamic. Assume that the classical field theory is given by a symmetric covariant Lagrangian density defined on the first jet bundle of a principal bundle. It is shown that covariant and dynamic reduction lead to equivalent equations of motion. This is achieved by constructing a new Lagrangian defined on an infinite dimensional space which turns out to be gauge group invariant.
LA - eng
KW - Covariant reduction; dynamic reduction; affine Euler-Poincaré equation; covariant Euler-Poincaré equation; Lagrangian; principal bundle field theory; covariant reduction; affine Euler-Poincaré equation; covariant Euler-Poincaré equation
UR - http://eudml.org/doc/116291
ER -
References
top- M. Castrillón-López, P. L. García Pérez, T. S. Ratiu, Euler-Poincaré reduction on principal bundles, Lett. Math. Phys. 58 (2001), 167-180 Zbl1020.58018MR1876252
- M. Castrillón-López, J. E. Marsden, Covariant and dynamical reduction for principal bundle field theories, Ann. Glob. Anal. Geom. 34 (2008), 263-285 Zbl1162.83347MR2434857
- M. Castrillón-López, J. E. Marsden, T. S. Ratiu, Lagrangian reduction by stages, Mem. Amer. Math. Soc. 152 (2001) Zbl1193.37072MR1840979
- M. Castrillón-López, T. S. Ratiu, Reduction in principal bundles: covariant Lagrange-Poincaré equations, Comm. Math. Phys. 236 (2003), 223-250 Zbl1037.53056MR1981991
- M. Castrillón-López, T. S. Ratiu, S. Shkoller, Reduction in principal fiber bundles: covariant Euler-Poincaré equations, Proc. Amer. Math. Soc. 128 (2000), 2155-2164 Zbl0967.53019MR1662269
- I. E. Dzyaloshinskiĭ, Macroscopic description of spin glasses., Modern trends in the theory of condensed matter (Proc. Sixteenth Karpacz Winter School Theoret. Phys., Karpacz, 1979), Lecture Notes in Physics 115 (1980), 204-224 MR583572
- F. Gay-Balmaz, T. S. Ratiu, Reduced Lagrangian and Hamiltonian formulations of Euler-Yang-Mills fluids, J. Symp. Geom. 6 (2008), 189-237 Zbl1149.70015MR2434440
- F. Gay-Balmaz, T. S. Ratiu, The geometric structure of complex fluids, Adv. in Appl. Math. 42 (2008), 176-275 Zbl1161.37052MR2493976
- M. Gotay, J. Isenberg, J. E. Marsden, Momentum Maps and Classical Relativistic Fields. Part II: Canonical Analysis of Field Theories, preprint, arXiv:math-ph/0411032v1 (2004)
- M. Gotay, J. Isenberg, J. E. Marsden, R. Montgomery, Momentum Maps and Classical Relativistic Fields. Part I: Covariant Field Theory, preprint, arXiv:physics/9801019v2 (2004)
- A. A. Isaev, M. Yu. Kovalevskii, S. V. Peletminskii, On dynamics of various magnetically ordered structures, The Physics of Metals and Metallography 77 (1994), 342-347
- E. A. Ivanchenko, Backward electromagnetic waves in a magnetically disordered dielectric, Low. Temp. Phys. 26 (2000), 422-424
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.