# Galois actions on Néron models of Jacobians

Lars H. Halle^{[1]}

- [1] Gottfried Wilhelm Leibniz Universität Hannover Institut für Algebraische Geometrie Welfengarten 1 30167 Hannover (Deutschland)

Annales de l’institut Fourier (2010)

- Volume: 60, Issue: 3, page 853-903
- ISSN: 0373-0956

## Access Full Article

top## Abstract

top## How to cite

topHalle, Lars H.. "Galois actions on Néron models of Jacobians." Annales de l’institut Fourier 60.3 (2010): 853-903. <http://eudml.org/doc/116294>.

@article{Halle2010,

abstract = {Let $X$ be a smooth curve defined over the fraction field $K$ of a complete discrete valuation ring $R$. We study a natural filtration of the special fiber of the Néron model of the Jacobian of $X$ by closed, unipotent subgroup schemes. We show that the jumps in this filtration only depend on the fiber type of the special fiber of the minimal regular model with strict normal crossings for $X$ over $R$, and in particular are independent of the residue characteristic. Furthermore, we obtain information about where these jumps occur. We also compute the jumps for each of the finitely many possible fiber types for curves of genus $1$ and $2$.},

affiliation = {Gottfried Wilhelm Leibniz Universität Hannover Institut für Algebraische Geometrie Welfengarten 1 30167 Hannover (Deutschland)},

author = {Halle, Lars H.},

journal = {Annales de l’institut Fourier},

keywords = {Models of curves; tame cyclic quotient singularities; group actions on cohomology; Néron models; tame cyclic quotient singularities,},

language = {eng},

number = {3},

pages = {853-903},

publisher = {Association des Annales de l’institut Fourier},

title = {Galois actions on Néron models of Jacobians},

url = {http://eudml.org/doc/116294},

volume = {60},

year = {2010},

}

TY - JOUR

AU - Halle, Lars H.

TI - Galois actions on Néron models of Jacobians

JO - Annales de l’institut Fourier

PY - 2010

PB - Association des Annales de l’institut Fourier

VL - 60

IS - 3

SP - 853

EP - 903

AB - Let $X$ be a smooth curve defined over the fraction field $K$ of a complete discrete valuation ring $R$. We study a natural filtration of the special fiber of the Néron model of the Jacobian of $X$ by closed, unipotent subgroup schemes. We show that the jumps in this filtration only depend on the fiber type of the special fiber of the minimal regular model with strict normal crossings for $X$ over $R$, and in particular are independent of the residue characteristic. Furthermore, we obtain information about where these jumps occur. We also compute the jumps for each of the finitely many possible fiber types for curves of genus $1$ and $2$.

LA - eng

KW - Models of curves; tame cyclic quotient singularities; group actions on cohomology; Néron models; tame cyclic quotient singularities,

UR - http://eudml.org/doc/116294

ER -

## References

top- M. Artin, G. Winters, Degenerate fibres and stable reduction of curves, Topology 10 (1971), 373-383 Zbl0196.24403MR476756
- Siegfried Bosch, Werner Lütkebohmert, Michel Raynaud, Néron models, 21 (1990), Springer-Verlag, Berlin Zbl0705.14001MR1045822
- Ching-Li Chai, Néron models for semiabelian varieties: congruence and change of base field, Asian J. Math. 4 (2000), 715-736 Zbl1100.14511MR1870655
- Brian Conrad, Bas Edixhoven, William Stein, ${J}_{1}\left(p\right)$ has connected fibers, Doc. Math. 8 (2003), 331-408 (electronic) Zbl1101.14311MR2029169
- P. Deligne, D. Mumford, The irreducibility of the space of curves of given genus, Inst. Hautes Études Sci. Publ. Math. (1969), 75-109 Zbl0181.48803MR262240
- Mireille Deschamps, Réduction semi-stable, in Séminaire sur les Pinceaux de Courbes de Genre au Moins Deux, 86 (1981), Société Mathématique de France, Paris Zbl0505.14008MR642675
- Peter Donovan, The Lefschetz-Riemann-Roch formula, Bull. Soc. Math. France 97 (1969), 257-273 Zbl0185.49401MR263834
- Bas Edixhoven, Néron models and tame ramification, Compositio Math. 81 (1992), 291-306 Zbl0759.14033MR1149171
- Cohomologie $l$-adique et fonctions $L$, (1977), GrothendieckAlexanderA., Berlin MR491704
- Lars Halvard Halle, Stable reduction of curves and tame ramification, (2007) Zbl1195.14011
- Robin Hartshorne, Algebraic geometry, (1977), Springer-Verlag, New York Zbl0367.14001MR463157
- Bernhard Köck, The Grothendieck-Riemann-Roch theorem for group scheme actions, Ann. Sci. École Norm. Sup. (4) 31 (1998), 415-458 Zbl0951.14029MR1621405
- K. Kodaira, On compact analytic surfaces. II, III, Ann. of Math. (2) 77 (1963), 563–626; ibid. 78 (1963), 1-40 Zbl0118.15802MR184257
- Joseph Lipman, Rational singularities, with applications to algebraic surfaces and unique factorization, Inst. Hautes Études Sci. Publ. Math. (1969), 195-279 Zbl0181.48903MR276239
- Qing Liu, Algebraic geometry and arithmetic curves, 6 (2002), Oxford University Press, Oxford Zbl0996.14005MR1917232
- Yukihiko Namikawa, Kenji Ueno, The complete classification of fibres in pencils of curves of genus two, Manuscripta Math. 9 (1973), 143-186 Zbl0263.14007MR369362
- A. P. Ogg, On pencils of curves of genus two, Topology 5 (1966), 355-362 Zbl0145.17802MR201437
- Jean-Pierre Serre, Linear representations of finite groups, (1977), Springer-Verlag, New York Zbl0355.20006MR450380
- Jean-Pierre Serre, Local fields, 67 (1979), Springer-Verlag, New York Zbl0423.12016MR554237
- Gayn B. Winters, On the existence of certain families of curves, Amer. J. Math. 96 (1974), 215-228 Zbl0334.14004MR357406

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.