The Grothendieck-Riemann-Roch theorem for group scheme actions

Bernhard Köck

Annales scientifiques de l'École Normale Supérieure (1998)

  • Volume: 31, Issue: 3, page 415-458
  • ISSN: 0012-9593

How to cite

top

Köck, Bernhard. "The Grothendieck-Riemann-Roch theorem for group scheme actions." Annales scientifiques de l'École Normale Supérieure 31.3 (1998): 415-458. <http://eudml.org/doc/82465>.

@article{Köck1998,
author = {Köck, Bernhard},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {group scheme actions; equivariant geometry; equivariant Grothendieck-Riemann-Roch formula; Todd class; equivariant Adam-Riemann-Roch formula},
language = {eng},
number = {3},
pages = {415-458},
publisher = {Elsevier},
title = {The Grothendieck-Riemann-Roch theorem for group scheme actions},
url = {http://eudml.org/doc/82465},
volume = {31},
year = {1998},
}

TY - JOUR
AU - Köck, Bernhard
TI - The Grothendieck-Riemann-Roch theorem for group scheme actions
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1998
PB - Elsevier
VL - 31
IS - 3
SP - 415
EP - 458
LA - eng
KW - group scheme actions; equivariant geometry; equivariant Grothendieck-Riemann-Roch formula; Todd class; equivariant Adam-Riemann-Roch formula
UR - http://eudml.org/doc/82465
ER -

References

top
  1. [At] M. F. ATIYAH, Characters and cohomology of finite groups (Publ. Math. IHES, Vol. 9, 1961, pp. 23-64). Zbl0107.02303MR26 #6228
  2. [AT] M. F. ATIYAH and D. O. TALL, Group representations, λ-rings and the J-homomorphism (Topology, Vol. 8, 1969, pp. 253-297). Zbl0159.53301MR39 #5702
  3. [Ba] H. BASS, Algebraic K-theory (Math. Lecture Note Series, Benjamin, New York, 1968). Zbl0174.30302MR40 #2736
  4. [SGA6] P. BERTHELOT, A. GROTHENDIECK and L. ILLUSIE, Théorie des Intersections et Théorème de Riemann-Roch (Lecture Notes in Math., Vol. 225, Springer, New York, 1971). Zbl0218.14001MR50 #7133
  5. [Bo] R. BOLTJE, Mackey functors and related structures in representation theory and number theory, Report No. 327, Institut für Mathematik der Universität Augsburg, 1995. 
  6. [BV] M. BRION and M. VERGNE, An equivariant Riemann-Roch theorem for complete, simplicial toric varieties (J. Reine Angew. Math., Vol. 482, 1997, pp. 67-92). Zbl0862.14006MR98a:14067
  7. [BC] D. BURNS and T. CHINBURG, Adams operations and integral Hermitian-Galois representations (Amer. J. Math., Vol. 118, 1996, pp. 925-962). Zbl0865.11076MR98g:11126
  8. [CNT] Ph. CASSOU-NOGUÈS and M. J. TAYLOR, Opérations d'Adams et Groupe des classes d'Algèbre de groupe (J. Algebra, Vol. 95, 1985, pp. 125-152). Zbl0603.12007MR87a:11116
  9. [CEPT] T. CHINBURG, B. EREZ, G. PAPPAS and M. J. TAYLOR, Riemann-Roch type theorems for arithmetic schemes with a finite group action (J. Reine Angew. Math., Vol. 489, 1997, pp. 151-187). Zbl0903.19001MR98e:14006
  10. [CR] C. W. CURTIS and I. REINER, Methods of representation theory with applications to finite groups and orders I (Pure Appl. Math., Wiley, New York, 1981). Zbl0469.20001
  11. [De] M. DEMAZURE, Désingularisation des variétés de Schubert généralisées (Ann. Sci. École Norm. Sup., (4), Vol. 7, 1974, pp. 53-88). Zbl0312.14009MR50 #7174
  12. [SGA3] M. DEMAZURE and A. GROTHENDIECK, Schémas en Groupes I, II, III (Lecture Notes in Math., Vol. 151-152-153, Springer, New York, 1970). MR43 #223a
  13. [EG] D. EDIDIN and W. GRAHAM, Equivariant intersection theory, preprint, alg-geom/9603008. 
  14. [FH] W. FULTON and J. HARRIS, Representation theory (Grad. Texts in Math., Vol. 129, Springer, New York, 1991). Zbl0744.22001MR93a:20069
  15. [FL] W. FULTON and S. LANG, Riemann-Roch algebra (Grundlehren Math. Wiss., Vol. 277, Springer, New York, 1985). Zbl0579.14011MR88h:14011
  16. [FM] W. FULTON and R. MACPHERSON, Characteristic classes of direct image bundles for covering maps (Ann. of Math., Vol. 125, 1987, pp. 1-92). Zbl0628.55010MR88f:14015
  17. [Gr] D. R. GRAYSON, Exterior power operations on higher K-theory (K-theory, Vol. 3, 1989, pp. 247-260). Zbl0701.18007MR91h:19005
  18. [Gro1] A. GROTHENDIECK, Sur quelques propriétés fondamentales en théorie des intersections, Séminaire C. Chevalley, 2e année, Anneaux de Chow et applications, Secr. Math. Paris, 1958. MR21 #5637
  19. [Gro2] A. GROTHENDIECK, Classes de Chern et représentations linéaires des groupes discrets, in J. Giraud et al., Dix exposés sur la cohomologie des schémas (Adv. Stud. Pure Math., North-Holland Publishing Company, Amsterdam, 1968, pp. 215-305). Zbl0198.26101MR42 #280
  20. [EGA] A. GROTHENDIECK and J. A. DIEUDONNÉ, Eléments de Géométrie Algébrique I (Grundlehren Math. Wiss., Vol. 166, Springer, New York, 1971) ; ...II, III, (Publ. Math. IHES, Vol. 8, 1961, Vol. 11, 1961, Vol. 17, 1963). 
  21. [Ha] R. HARTSHORNE, Algebraic geometry (Graduate Texts in Math., Vol. 52, Springer, New York, 1977). Zbl0367.14001MR57 #3116
  22. [Hi] H. L. HILLER, λ-rings and algebraic K-theory (J. Pure Appl. Algebra, Vol. 20, 1981, pp. 241-266). Zbl0471.18007MR82e:18016
  23. [J] J. C. JANTZEN, Representations of algebraic groups (Pure Appl. Math., Vol. 131, Academic Press, Boston, 1987). Zbl0654.20039MR89c:20001
  24. [Ke] M. KERVAIRE, Opérations d'Adams en Théorie des représentations linéaires des groupes finis (Enseign. Math., Vol. 22, 1976, pp. 1-28). Zbl0335.20003MR54 #5325
  25. [Ko0] B. KÖCK, Das Lefschetz- und Riemann-Roch-Theorem in der höheren äquivarianten K-Theorie Dissertation, Regensburg, 1989. 
  26. [Ko1] B. KÖCK, Chow motif and higher Chow theory of G / P (Manuscripta Math., Vol. 70, 1991, pp. 363-372). Zbl0735.14001MR91m:14077
  27. [Ko2] B. KÖCK, Das Adams-Riemann-Roch-Theorem in der höheren äquivarianten K-Theorie (J. Reine Angew. Math., Vol. 421, 1991, pp. 189-217). Zbl0731.19005
  28. [Ko3] B. KÖCK, The Lefschetz theorem in higher equivariant K-theory (Comm. Algebra, Vol. 19, 1991, pp. 3411-3422). Zbl0760.14004MR93g:19008
  29. [Ko4] B. KÖCK, Higher K'-groups of integral group rings (K-Theory, Vol. 4, 1991, pp. 177-187). Zbl0752.16013MR93a:19002
  30. [Ko5] B. KÖCK, Shuffle products in higher K-theory (J. Pure Appl. Algebra, Vol. 92, 1994, pp. 269-307). Zbl0797.19003MR95c:19001
  31. [Ko6] B. KÖCK, The Grothendieck-Riemann-Roch theorem in the higher K-theory of group scheme actions Habilitationsschrift, Karlsruhe, 1995. 
  32. [Ko7] B. KÖCK, On Adams operations on the higher K-theory of group rings, in : G. Banaszak et al. (eds.), Algebraic K-theory (Poznań, 1995) (Contemp. Math., Vol. 199, Amer. Math. Soc., Providence, 1996, pp. 139-150). Zbl0857.19001
  33. [Ko8] B. KÖCK, Adams operations for projective modules over group rings (Math. Proc. Cambridge Philos. Soc., Vol. 122, 1997, pp. 55-71). Zbl0884.19002MR98g:13013
  34. [Ko9] B. KÖCK, Operations on locally free classgroups, preprint, Karlsruhe, 1997. 
  35. [Ko10] B. KÖCK, Riemann-Roch for tensor power, preprint, Karlsruhe, 1998. 
  36. [KK1] B. KOSTANT and S. KUMAR, The nil Hecke ring and cohomology of G/P for a Kac-Moody group G (Adv. Math., Vol. 62, 1986, pp. 187-237). Zbl0641.17008MR88b:17025b
  37. [KK2] B. KOSTANT and S. KUMAR, T-equivariant K-theory of generalized flag varieties (J. Differential Geom., Vol. 32, 1990, pp. 549-603). Zbl0731.55005MR92c:19006
  38. [Kr] Ch. KRATZER, λ-Structure en K-théorie algébrique (Comment. Math. Helv., Vol. 55, 1980, pp. 233-254). Zbl0444.18008
  39. [La] A. LASCOUX, Anneau de Grothendieck de la variété de drapeaux, in The Grothendieck Festschrift, vol. III (Progr. Math., Vol. 88, Birkhäuser, Boston, 1990, pp. 1-34). Zbl0742.14041MR92j:14064
  40. [Le] H. W. LENSTRA, Grothendieck groups of abelian group rings (J. Pure Appl. Algebra, Vol. 20, 1981, pp. 173-193). Zbl0467.16016MR82g:16024
  41. [Man] Y. I. MANIN, Lectures on the K-functor in algebraic geometry (Russian Math. Surveys, Vol. 24, No. 5, 1969, pp. 1-89). Zbl0204.21302MR42 #265
  42. [Mo] R. MORELLI, The K theory of a toric variety (Adv. Math., Vol. 100, 1993, pp. 154-182). Zbl0805.14025MR94j:14047
  43. [Mum] D. MUMFORD, Geometric invariant theory (Ergeb. Math. Grenzgeb., Vol. 34, Springer, New York, 1965). Zbl0147.39304MR35 #5451
  44. [Q] D. QUILLEN, Higher algebraic K-theory : I, in H. Bass (ed.), Algebraic K-Theory I (Seattle, 1972) (Lecture Notes in Math., Vol. 341, Springer, New York, 1973, pp. 85-147). Zbl0292.18004MR49 #2895
  45. [Sn] V. P. SNAITH, Invariants of representations, in J. F. Jardine and V. P. Snaith (eds.), Algebraic K-theory : Connections with geometry and topology (Lake Louise, 1987) (NATO Adv. Sci. Inst. Ser. C : Math. Phys. Sci., Vol. 279, Kluwer Acad. Publ., Dordrecht, 1989, pp. 445-508). Zbl0721.20004MR91h:20010
  46. [So] C. SOULÉ, Opérations en K-Théorie algébrique (Canad. J. Math., Vol. 37, No. 3, 1985, pp. 488-550). Zbl0575.14015MR87b:18013
  47. [Su] H. SUMIHIRO, Equivariant completion II (J. Math. Kyoto Univ., Vol. 15, 1975, pp. 573-605). Zbl0331.14008MR52 #8137
  48. [Ta] G. TAMME, The theorem of Riemann-Roch, in M. Rapoport, N. Schappacher and P. Schneider (eds.), Beilinson's conjectures on special values of L-functions (Perspect. in Math., Vol. 4, Academic Press, Boston, 1988, pp. 103-168). Zbl0664.14004MR89d:14013
  49. [Tho] C. B. THOMAS, Characteristic classes and the cohomology of finite groups (Cambridge Stud. Adv. Math., Vol. 9, Cambridge Univ. Press, Cambridge, 1986). Zbl0618.20036MR88f:20005
  50. [Th1] R. W. THOMASON, Absolute cohomological purity (Bull. Soc. Math. France, Vol. 112, 1984, pp. 397-406). Zbl0584.14007MR87e:14018
  51. [Th2] R. W. THOMASON, Lefschetz-Riemann-Roch theorem and coherent trace formula (Invent. Math., Vol. 85, 1986, pp. 515-543). Zbl0653.14005MR87j:14028
  52. [Th3] R. W. THOMASON, Algebraic K-theory of group scheme actions, in W. Browder (ed.), Algebraic topology and algebraic K-theory (Princeton, 1983) (Ann. Math. Stud., Vol. 113, Univ. Press, Princeton, 1987, pp. 539-563). Zbl0701.19002MR89c:18016
  53. [Th4] R. W. THOMASON, Une formule de Lefschetz en K-théorie équivariante algébrique (Duke Math. J., Vol. 68, 1992, pp. 447-462). Zbl0813.19002MR93m:19007
  54. [Th5] R. W. THOMASON, Les K-groupes d'un schéma éclaté et une formule d'intersection excédentaire (Invent., Math., Vol. 112, 1993, pp. 195-215). Zbl0816.19004MR93k:19005
  55. [We] C. A. WEIBEL, Homotopy algebraic K-theory, in M. R. Stein and R. K. Dennis (eds.), Algebraic K-theory and algebraic number theory (Honolulu, 1987) (Contemp. Math., Vol. 83, Amer. Math. Soc., Providence, 1989, pp. 461-488). Zbl0669.18007MR90d:18006

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.