Explicit base change lifts of the supercuspidal representations of U ( 1 , 1 ) ( F 0 )

Laure Blasco[1]

  • [1] Université Paris-Sud Département de Mathématiques U.M.R. 8628 du C.N.R.S. Bâtiment 425 91405 Orsay cedex (France)

Annales de l’institut Fourier (2010)

  • Volume: 60, Issue: 3, page 905-938
  • ISSN: 0373-0956

Abstract

top
Let F 0 be a nonarchimedean local field of characterisitic 0 and odd residual characteristic. We describe explicitly the two base change lifts of supercuspidal representations of U ( 1 , 1 ) ( F 0 ) . This represents a step towards the goal of describing base change of endoscopic supercuspidal L -packets of U ( 2 , 1 ) ( F 0 ) .

How to cite

top

Blasco, Laure. "Changements de base explicites des représentations supercuspidales de $U(1,1)(F_0)$." Annales de l’institut Fourier 60.3 (2010): 905-938. <http://eudml.org/doc/116295>.

@article{Blasco2010,
abstract = {Soit $F_0$ un corps local non archimédien de caractéristique nulle et de caractéristique résiduelle impaire. On décrit explicitement les changements de base des représentations supercuspidales de $U(1,1)(F_\{0\})$. C’est une étape vers la description du changement de base des paquets endoscopiques supercuspidaux de $U(2,1)(F_\{0\})$.},
affiliation = {Université Paris-Sud Département de Mathématiques U.M.R. 8628 du C.N.R.S. Bâtiment 425 91405 Orsay cedex (France)},
author = {Blasco, Laure},
journal = {Annales de l’institut Fourier},
keywords = {Local field; base change; unitary group; supercuspidal representations; $L$-packets},
language = {fre},
number = {3},
pages = {905-938},
publisher = {Association des Annales de l’institut Fourier},
title = {Changements de base explicites des représentations supercuspidales de $U(1,1)(F_0)$},
url = {http://eudml.org/doc/116295},
volume = {60},
year = {2010},
}

TY - JOUR
AU - Blasco, Laure
TI - Changements de base explicites des représentations supercuspidales de $U(1,1)(F_0)$
JO - Annales de l’institut Fourier
PY - 2010
PB - Association des Annales de l’institut Fourier
VL - 60
IS - 3
SP - 905
EP - 938
AB - Soit $F_0$ un corps local non archimédien de caractéristique nulle et de caractéristique résiduelle impaire. On décrit explicitement les changements de base des représentations supercuspidales de $U(1,1)(F_{0})$. C’est une étape vers la description du changement de base des paquets endoscopiques supercuspidaux de $U(2,1)(F_{0})$.
LA - fre
KW - Local field; base change; unitary group; supercuspidal representations; $L$-packets
UR - http://eudml.org/doc/116295
ER -

References

top
  1. J. Adler, J. Lansky, Depth-zero base change for unramified U ( 2 , 1 ) , J. Number Theory 114 (2005), 324-360 Zbl1077.22021MR2167974
  2. J. Adler, J. Lansky, Depth-zero base change for ramified U ( 2 , 1 ) , (2008) Zbl1233.22002
  3. L. Blasco, Description du dual admissible de U ( 2 , 1 ) ( F ) par la théorie des types de C. Bushnell et P. Kutzko, Manuscripta Math. 107 (2002), 151-186 Zbl1108.22011MR1894738
  4. L. Blasco, Types, paquets et changement de base : l’exemple de U ( 2 , 1 ) ( F 0 ) , I, Canadian J. Math. 60 (2008), 790-821 Zbl1158.22019MR2423457
  5. C. Bushnell, G. Henniart, Local tame lifting for GL ( N ) I : simple characters, Publ. Math. IHES 83 (1996), 105-233 Zbl0878.11042MR1423022
  6. C. Bushnell, G. Henniart, Local tame lifting for GL ( n ) II : wildly ramified supercuspidals, Astérisque, Soc. Math. France 254 (1999) Zbl0920.11079MR1685898
  7. C. Bushnell, G. Henniart, The local Langlands conjecture for GL ( 2 ) , 335 (2006), Springer-Verlag, Berlin Zbl1100.11041MR2234120
  8. V. Ennola, On the characters of the finite unitary groups, Ann. Acad. Scien. Fenn. 323 (1963), 1-35 Zbl0109.26001MR156900
  9. Y. Flicker, Stable and labile base change for U ( 2 ) , Duke Math. J. 49 (1982), 691-729 Zbl0502.12013MR672503
  10. Y. Flicker, On distinguished representations, J. Reine Angew. Math. 418 (1991), 134-172 Zbl0725.11026MR1111204
  11. A. Fröhlich, Principal orders and embedding of local fields in algebras, Proc. London Math. Soc. 54 (1987), 247-266 Zbl0615.12021MR872807
  12. J. Hakim, F. Murnaghan, Two types of distinguished supercuspidal representations, Int. Math. Res. Not. 35 (2002), 1857-1889 Zbl0996.22012MR1920643
  13. H. Jacquet, R. Langlands, Automorphic forms on GL ( 2 ) , (1970), Springer-Verlag, Berlin Zbl0236.12010MR401654
  14. R. Kottwitz, Rational conjugacy classes on reductive groups, Duke Math. J. 49 (1982), 785-806 Zbl0506.20017MR683003
  15. P. C. Kutzko, P. J. Sally, All supercuspidal representations of S L over a p -adic field are induced, Representation theory of reductive groups (Park City, Utah, 1982) 40 (1983), 185-196, Birkhäuser, Boston, MA Zbl0538.22011
  16. J.-P. Labesse, R. Langlands, L -indistinguishability for S L ( 2 ) , Canadian J. Math. 31 (1979), 726-785 Zbl0421.12014MR540902
  17. L. Morris, Tamely ramified supercuspidal representations, Ann. scient. Éc. Norm. Sup. 29 (1996), 639-667 Zbl0870.22012MR1399618
  18. J. Rogawski, Automorphic representations of unitary groups in three variables, 123 (1990), Princeton University Press, Princeton, NJ Zbl0724.11031MR1081540
  19. T. A. Springer, Characters of special groups, Seminar on Algebraic Groups and Related Finite Groups (The Institute for Advanced Study, Princeton, N.J., 1968/69) (1970), 121-166, Springer, Berlin Zbl0259.20039MR263943
  20. S. Stevens, Double coset decompositions and intertwining, Manuscripta Math. 106 (2001), 349-364 Zbl0988.22008MR1869226

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.