Tamely ramified supercuspidal representations

Lawrence Morris

Annales scientifiques de l'École Normale Supérieure (1996)

  • Volume: 29, Issue: 5, page 639-667
  • ISSN: 0012-9593

How to cite

top

Morris, Lawrence. "Tamely ramified supercuspidal representations." Annales scientifiques de l'École Normale Supérieure 29.5 (1996): 639-667. <http://eudml.org/doc/82419>.

@article{Morris1996,
author = {Morris, Lawrence},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {reductive group; local non-archimedean field; parahoric subgroup; irreducible representation; supercuspidal representations; Weil-Deligne group},
language = {eng},
number = {5},
pages = {639-667},
publisher = {Elsevier},
title = {Tamely ramified supercuspidal representations},
url = {http://eudml.org/doc/82419},
volume = {29},
year = {1996},
}

TY - JOUR
AU - Morris, Lawrence
TI - Tamely ramified supercuspidal representations
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1996
PB - Elsevier
VL - 29
IS - 5
SP - 639
EP - 667
LA - eng
KW - reductive group; local non-archimedean field; parahoric subgroup; irreducible representation; supercuspidal representations; Weil-Deligne group
UR - http://eudml.org/doc/82419
ER -

References

top
  1. [Bo2] N. BOURBAKI, Algèbre, Chapitre 9, Hermann, Paris, 1973. 
  2. [B-T2] F. BRUHAT and J. TITS, Groupes réductifs sur un corps local II : Schémas en groupes. Existence d'une donnée radicielle valuée (Publ. Math. I.H.E.S., Vol. 60, 1984, pp. 5-184). Zbl0597.14041MR86c:20042
  3. [B-K] C. J. BUSHNELL and P. C. KUTZKO, The admissible dual of GL (N) via compact open subgroups, Annals of Mathematics Studies No. 129, Princeton Univ. Press, Princeton NJ, 1993. Zbl0787.22016MR94h:22007
  4. [Ca] P. CARTIER, Representation of p-adic groups : a survey (Proc. of Symp. in Pure Math., Vol. 33, 1979), part 1, pp. 111-155 Am. Math. Soc., Providence, R.I. Zbl0421.22010MR81e:22029
  5. [Cy] H. CARAYOL, Représentations cuspidales du groupe linéaires (Ann. Scient. Ec. Norm. Sup., (4), Vol. 17, 1984, pp. 191-225). Zbl0549.22009MR86f:22019
  6. [C] R. CARTER, Finite groups of Lie type : conjugacy classes and complex characters, Wiley Interscience, Chichester, 1985. Zbl0567.20023
  7. [CR] C. CURTIS and I. REINER, Methods of representation theory, Vol.I, Wiley Classics Library, John Wiley, New York, 1990. MR90k:20001
  8. [DM] F. DIGNE and J. MICHEL, Representations of finite groups of Lie type, London Mathematical Society Student Texts 21, Cambridge University Press, Cambridge, 1991. Zbl0815.20014MR92g:20063
  9. [H] R. HOWLETT, Normalisers of parabolic subgroups of reflection groups (J. London Math. Soc., Vol. 21, 1980, pp. 62-80). Zbl0427.20040MR81g:20094
  10. [Ko] R. E. KOTTWITZ, Stable trace formula : cuspidal tempered terms (Duke Math. J., Vol. 51, 1984, pp. 611-650). Zbl0576.22020MR85m:11080
  11. [K] P. C. KUTZKO, Mackey's theorem for non unitary representations (Proc. Am. Math. Soc., Vol. 64, 1977, pp. 173-175). Zbl0375.22005MR56 #533
  12. [K1] P. C. KUTZKO, On the restriction of supercuspidal representations to compact open subgroups (Duke Math. J., Vol. 52, 1985, pp. 753-764). Zbl0604.22010MR87e:22038
  13. [L0] G. LUSZTIG, Some examples of square integrable representations of semisimple p-adic groups (Trans. Am. math. Soc., Vol. 277, 1983, pp. 623-653). Zbl0526.22015MR84j:22023
  14. [L2] G. LUSZTIG, Intersection cohomology methods in representation theory, International Congress of Mathematicians Kyoto, 1990. Zbl0749.14010MR92m:20034
  15. [L3] G. LUSZTIG, Intersection cohomology complexes on a reductive group (Inv. Math., Vol. 75, 1984, pp. 205-272). Zbl0547.20032MR86d:20050
  16. [L4] G. LUSZTIG, Representations of finite Chevalley groups, C.B.M.S regional conference series no. 39 (Amer. Math. Soc., Providence, R.I., 1978). Zbl0418.20037MR80f:20045
  17. [L5] G. LUSZTIG, Character sheaves IV (Adv. Math., Vol. 59, 1986, pp. 1-63 ; V. Ibid., Vol. 61, 1986, pp. 103-155). Zbl0602.20035
  18. [M] L. MORRIS, Tamely ramified intertwining algebras (Inv. Math., Vol. 114, 1993, pp. 1-54). Zbl0854.22022MR94g:22035
  19. [M1] L. MORRIS, P-cuspidal representations of level one (Proc. London Math. Soc., (3), Vol. 58, 1989, pp. 550-558). Zbl0678.22010MR90c:22056
  20. [M2] L. MORRIS, Level zero G-types (Preprint 1994). 
  21. [P-R] G. PRASAD and M. RAGHUNATHAN, Topological central extensions of semisimple groups over local fields I (Ann. of Math., Vol. 119, 1984, pp. 143-201). Zbl0552.20025MR86e:20051a
  22. [R] M. REEDER, On the Iwahori spherical discrete series for p-adic Chevalley groups ; formal degrees and L-packets (Ann. Scient. Ec. Norm. Sup., Vol. 27, 1994, pp. 463-491). Zbl0819.22013MR95g:22017
  23. [T] J. TITS, Reductive groups over local fields (In Proc. Symp. in Pure Mathematics, Vol. 33, 1979, Part 1, pp. 29-69, Am. Math. Soc., Providence R.I.). Zbl0415.20035MR80h:20064
  24. [T2] J. TITS, Classification of algebraic semisimple groups (In Proc. Symp. in Pure Mathematics, Vol. 9, 1966, pp. 33-62, Am. Math. Soc., Providence, R.I.). Zbl0238.20052MR37 #309
  25. [V] D. VOGAN, The local Langlands conjecture, (Cont. Math., Vol. 145, Am. Math. Soc., Providence R.I., 1993). Zbl0802.22005MR94e:22031

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.