An optimal endpoint trace embedding
Andrea Cianchi[1]; Luboš Pick[2]
- [1] Università di Firenze Dipartimento di Matematica e Applicazioni per l’Architettura Piazza Ghiberti 27 50122 Firenze (Italy)
- [2] Charles University Faculty of Mathematics and Physics Department of Mathematical Analysis Sokolovská 83 186 75 Praha 8 (Czech Republic)
Annales de l’institut Fourier (2010)
- Volume: 60, Issue: 3, page 939-951
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topCianchi, Andrea, and Pick, Luboš. "An optimal endpoint trace embedding." Annales de l’institut Fourier 60.3 (2010): 939-951. <http://eudml.org/doc/116296>.
@article{Cianchi2010,
abstract = {We find an optimal Sobolev-type space on $\mathbb\{R\}^n$ all of whose functions admit a trace on subspaces of $\mathbb\{R\}^n$ of given dimension. A corresponding trace embedding theorem with sharp range is established.},
affiliation = {Università di Firenze Dipartimento di Matematica e Applicazioni per l’Architettura Piazza Ghiberti 27 50122 Firenze (Italy); Charles University Faculty of Mathematics and Physics Department of Mathematical Analysis Sokolovská 83 186 75 Praha 8 (Czech Republic)},
author = {Cianchi, Andrea, Pick, Luboš},
journal = {Annales de l’institut Fourier},
keywords = {Sobolev spaces; trace inequalities; Lorentz spaces; rearrangement invariant spaces},
language = {eng},
number = {3},
pages = {939-951},
publisher = {Association des Annales de l’institut Fourier},
title = {An optimal endpoint trace embedding},
url = {http://eudml.org/doc/116296},
volume = {60},
year = {2010},
}
TY - JOUR
AU - Cianchi, Andrea
AU - Pick, Luboš
TI - An optimal endpoint trace embedding
JO - Annales de l’institut Fourier
PY - 2010
PB - Association des Annales de l’institut Fourier
VL - 60
IS - 3
SP - 939
EP - 951
AB - We find an optimal Sobolev-type space on $\mathbb{R}^n$ all of whose functions admit a trace on subspaces of $\mathbb{R}^n$ of given dimension. A corresponding trace embedding theorem with sharp range is established.
LA - eng
KW - Sobolev spaces; trace inequalities; Lorentz spaces; rearrangement invariant spaces
UR - http://eudml.org/doc/116296
ER -
References
top- R. A. Adams, Sobolev spaces, (1975), Academic Press, New York-London Zbl0314.46030MR450957
- C. Bennett, R. Sharpley, Interpolation of operators, 129 (1988), Academic Press Inc., Boston, MA Zbl0647.46057MR928802
- H. Brézis, S. Wainger, A note on limiting cases of Sobolev embeddings and convolution inequalities, Comm. Partial Differential Equations 5 (1980), 773-789 Zbl0437.35071MR579997
- V. I. Burenkov, Sobolev spaces on domains, 137 (1998), B. G. Teubner, Stuttgart Zbl0893.46024MR1622690
- A. Cianchi, R. Kerman, L. Pick, Boundary trace inequalities and rearrangements, J. Anal. Math. 105 (2008), 241-265 Zbl1169.46013MR2438426
- A. Cianchi, L. Pick, Sobolev embeddings into BMO, VMO, and , Ark. Mat. 36 (1998), 317-340 Zbl1035.46502MR1650446
- A. Cianchi, M. Randolfi, On the modulus of continuity of Sobolev functions Zbl1268.46026
- Serban Costea, Vladimir Maz’ya, Conductor inequalities and criteria for Sobolev-Lorentz two-weight inequalities, Sobolev Spaces in Mathematics. II 9 (2009), 103-121, Springer, New York Zbl1165.26009MR2484623
- D. E. Edmunds, R. Kerman, L. Pick, Optimal Sobolev imbeddings involving rearrangement-invariant quasinorms, J. Funct. Anal. 170 (2000), 307-355 Zbl0955.46019MR1740655
- K. Hansson, Imbedding theorems of Sobolev type in potential theory, Math. Scand. 45 (1979), 77-102 Zbl0437.31009MR567435
- R. Kerman, L. Pick, Optimal Sobolev imbeddings, Forum Math. 18 (2006), 535-570 Zbl1120.46018MR2254384
- V. G. Maz’ya, Sobolev spaces, (1985), Springer-Verlag, Berlin MR817985
- R. O’Neil, Convolution operators and spaces, Duke Math. J. 30 (1963), 129-142 Zbl0178.47701MR146673
- R. O’Neil, Integral transforms and tensor products on Orlicz spaces and spaces, J. Analyse Math. 21 (1968), 1-276 Zbl0182.16703MR626853
- J. Peetre, Espaces d’interpolation et théorème de Soboleff, Ann. Inst. Fourier (Grenoble) 16 (1966), 279-317 Zbl0151.17903MR221282
- E. M. Stein, Singular integrals and differentiability properties of functions, (1970), Princeton University Press, Princeton, N.J. Zbl0207.13501MR290095
- E. M. Stein, Editor’s note: the differentiability of functions in , Ann. of Math. (2) 113 (1981), 383-385 Zbl0531.46021MR607898
- G. Talenti, Inequalities in rearrangement invariant function spaces, Nonlinear analysis, function spaces and applications, Vol. 5 (Prague, 1994) (1994), 177-230, Prometheus, Prague Zbl0872.46020MR1322313
- W. P. Ziemer, Weakly differentiable functions, 120 (1989), Springer-Verlag, New York Zbl0692.46022MR1014685
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.