An optimal endpoint trace embedding

Andrea Cianchi[1]; Luboš Pick[2]

  • [1] Università di Firenze Dipartimento di Matematica e Applicazioni per l’Architettura Piazza Ghiberti 27 50122 Firenze (Italy)
  • [2] Charles University Faculty of Mathematics and Physics Department of Mathematical Analysis Sokolovská 83 186 75 Praha 8 (Czech Republic)

Annales de l’institut Fourier (2010)

  • Volume: 60, Issue: 3, page 939-951
  • ISSN: 0373-0956

Abstract

top
We find an optimal Sobolev-type space on n all of whose functions admit a trace on subspaces of n of given dimension. A corresponding trace embedding theorem with sharp range is established.

How to cite

top

Cianchi, Andrea, and Pick, Luboš. "An optimal endpoint trace embedding." Annales de l’institut Fourier 60.3 (2010): 939-951. <http://eudml.org/doc/116296>.

@article{Cianchi2010,
abstract = {We find an optimal Sobolev-type space on $\mathbb\{R\}^n$ all of whose functions admit a trace on subspaces of $\mathbb\{R\}^n$ of given dimension. A corresponding trace embedding theorem with sharp range is established.},
affiliation = {Università di Firenze Dipartimento di Matematica e Applicazioni per l’Architettura Piazza Ghiberti 27 50122 Firenze (Italy); Charles University Faculty of Mathematics and Physics Department of Mathematical Analysis Sokolovská 83 186 75 Praha 8 (Czech Republic)},
author = {Cianchi, Andrea, Pick, Luboš},
journal = {Annales de l’institut Fourier},
keywords = {Sobolev spaces; trace inequalities; Lorentz spaces; rearrangement invariant spaces},
language = {eng},
number = {3},
pages = {939-951},
publisher = {Association des Annales de l’institut Fourier},
title = {An optimal endpoint trace embedding},
url = {http://eudml.org/doc/116296},
volume = {60},
year = {2010},
}

TY - JOUR
AU - Cianchi, Andrea
AU - Pick, Luboš
TI - An optimal endpoint trace embedding
JO - Annales de l’institut Fourier
PY - 2010
PB - Association des Annales de l’institut Fourier
VL - 60
IS - 3
SP - 939
EP - 951
AB - We find an optimal Sobolev-type space on $\mathbb{R}^n$ all of whose functions admit a trace on subspaces of $\mathbb{R}^n$ of given dimension. A corresponding trace embedding theorem with sharp range is established.
LA - eng
KW - Sobolev spaces; trace inequalities; Lorentz spaces; rearrangement invariant spaces
UR - http://eudml.org/doc/116296
ER -

References

top
  1. R. A. Adams, Sobolev spaces, (1975), Academic Press, New York-London Zbl0314.46030MR450957
  2. C. Bennett, R. Sharpley, Interpolation of operators, 129 (1988), Academic Press Inc., Boston, MA Zbl0647.46057MR928802
  3. H. Brézis, S. Wainger, A note on limiting cases of Sobolev embeddings and convolution inequalities, Comm. Partial Differential Equations 5 (1980), 773-789 Zbl0437.35071MR579997
  4. V. I. Burenkov, Sobolev spaces on domains, 137 (1998), B. G. Teubner, Stuttgart Zbl0893.46024MR1622690
  5. A. Cianchi, R. Kerman, L. Pick, Boundary trace inequalities and rearrangements, J. Anal. Math. 105 (2008), 241-265 Zbl1169.46013MR2438426
  6. A. Cianchi, L. Pick, Sobolev embeddings into BMO, VMO, and L , Ark. Mat. 36 (1998), 317-340 Zbl1035.46502MR1650446
  7. A. Cianchi, M. Randolfi, On the modulus of continuity of Sobolev functions Zbl1268.46026
  8. Serban Costea, Vladimir Maz’ya, Conductor inequalities and criteria for Sobolev-Lorentz two-weight inequalities, Sobolev Spaces in Mathematics. II 9 (2009), 103-121, Springer, New York Zbl1165.26009MR2484623
  9. D. E. Edmunds, R. Kerman, L. Pick, Optimal Sobolev imbeddings involving rearrangement-invariant quasinorms, J. Funct. Anal. 170 (2000), 307-355 Zbl0955.46019MR1740655
  10. K. Hansson, Imbedding theorems of Sobolev type in potential theory, Math. Scand. 45 (1979), 77-102 Zbl0437.31009MR567435
  11. R. Kerman, L. Pick, Optimal Sobolev imbeddings, Forum Math. 18 (2006), 535-570 Zbl1120.46018MR2254384
  12. V. G. Maz’ya, Sobolev spaces, (1985), Springer-Verlag, Berlin MR817985
  13. R. O’Neil, Convolution operators and L ( p , q ) spaces, Duke Math. J. 30 (1963), 129-142 Zbl0178.47701MR146673
  14. R. O’Neil, Integral transforms and tensor products on Orlicz spaces and L ( p , q ) spaces, J. Analyse Math. 21 (1968), 1-276 Zbl0182.16703MR626853
  15. J. Peetre, Espaces d’interpolation et théorème de Soboleff, Ann. Inst. Fourier (Grenoble) 16 (1966), 279-317 Zbl0151.17903MR221282
  16. E. M. Stein, Singular integrals and differentiability properties of functions, (1970), Princeton University Press, Princeton, N.J. Zbl0207.13501MR290095
  17. E. M. Stein, Editor’s note: the differentiability of functions in R n , Ann. of Math. (2) 113 (1981), 383-385 Zbl0531.46021MR607898
  18. G. Talenti, Inequalities in rearrangement invariant function spaces, Nonlinear analysis, function spaces and applications, Vol. 5 (Prague, 1994) (1994), 177-230, Prometheus, Prague Zbl0872.46020MR1322313
  19. W. P. Ziemer, Weakly differentiable functions, 120 (1989), Springer-Verlag, New York Zbl0692.46022MR1014685

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.