Inequalities in rearrangement invariant function spaces
- Nonlinear Analysis, Function Spaces and Applications, Publisher: Prometheus Publishing House(Praha), page 177-230
Access Full Article
topHow to cite
topTalenti, Giorgio. "Inequalities in rearrangement invariant function spaces." Nonlinear Analysis, Function Spaces and Applications. Praha: Prometheus Publishing House, 1994. 177-230. <http://eudml.org/doc/220022>.
@inProceedings{Talenti1994,
author = {Talenti, Giorgio},
booktitle = {Nonlinear Analysis, Function Spaces and Applications},
keywords = {Nonlinear analysis; Function spaces; Proceedings; Spring school; Prague (Czech Republic)},
location = {Praha},
pages = {177-230},
publisher = {Prometheus Publishing House},
title = {Inequalities in rearrangement invariant function spaces},
url = {http://eudml.org/doc/220022},
year = {1994},
}
TY - CLSWK
AU - Talenti, Giorgio
TI - Inequalities in rearrangement invariant function spaces
T2 - Nonlinear Analysis, Function Spaces and Applications
PY - 1994
CY - Praha
PB - Prometheus Publishing House
SP - 177
EP - 230
KW - Nonlinear analysis; Function spaces; Proceedings; Spring school; Prague (Czech Republic)
UR - http://eudml.org/doc/220022
ER -
References
top- Adams, R.A., Sobolev spaces, Academic Press, 1975. (1975) Zbl0314.46030MR0450957
- Alvino, A., Sulla disuguaglianza di Sobolev in spazi di Lorentz, Boll. Uni. Mat. Ital. 5 (1977), no. 14A, 148–156. (1977) MR0438106
- Alvino, A., Lions, P.L., Trombetti, G., On optimization problems with prescribed rearrangements, Nonlinear Anal. 13 (1989), 185–220. (1989) Zbl0678.49003MR0979040
- Aronsson, G., An integral inequality and plastic torsion, Arch. Rational Mech. Anal. 7 (1989), 23–39. (1989) MR0540220
- Aronsson, G., Talenti, G., Estimating the integral of a function in terms of a distribution function of its gradient, Boll. Uni. Mat. Ital. 5 (1981), no. 18B, 885–894. (1981) Zbl0476.49030MR0641744
- Aubin, T., Problèmes isopérimetriques et espaces de Sobolev, J. Differential Geom. 11 (1976), 573–598. (1976) Zbl0371.46011MR0448404
- Baernstein, A., A unified approach to symmetrization, To appear in a forthcoming volume of Sympos. Math. Zbl0830.35005
- Bliss, G.A., An integral inequality, J. London Math. Soc. 5 (1930), 40–46. (1930) MR1574997
- Brascamp, H.J., Lieb, E.H., Luttinger, J.M., A general rearrangement inequality for multiple integrals, J. Funct. Anal. 17 (1974), 227–237. (1974) Zbl0286.26005MR0346109
- Brothers, J., Ziemer, W., Minimal rearrangements of Sobolev functions, J. Reine Angew. Math. 384 (1988), 153–179. (1988) Zbl0633.46030MR0929981
- Burago, Yu.D., Zalgaller, V.A., Geometric inequalities, Grundlehren der Mathematischen Wissenschaften, Vol. 285, Springer-Verlag, Berlin – New York, 1988. (1988) Zbl0633.53002MR0936419
- Burton, G.R., Variational problems on classes of rearrangements and multiple configurations for steady vortices, Ann. Inst. H. Poincaré Anal. Non Linéaire 6 (1989), 295–319. (1989) Zbl0677.49005MR0998605
- Chiti, G., Rearrangements of functions and convergence in Orlicz spaces, Appl. Anal. 9 (1979), 23–27. (1979) Zbl0424.46023MR0536688
- Crowe, J.A., Zweibel, J.A., Rearrangements of functions, J. Funct. Anal. 66 (1986), 432–438. (1986) Zbl0612.46027MR0839110
- Ehrhard, A., Inégalités isopérimetriques et intégrales de Dirichlet gaussiennes, Ann. Sci. École Norm. Sup. 17 (1984), 317–332. (1984) Zbl0546.49020MR0760680
- Eydeland, A., Spruck, J., Turkington, B., Multiconstrained variational problems of nonlinear eigenvalue type: new formulation and algorithms, Math. Comp. 55 (1990), 509–535. (1990) MR1035931
- Federer, H., Geometric measure theory, Grundlehren der Mathematischen Wissenschaften, Vol. 153, Springer-Verlag, New York, 1969. (1969) Zbl0176.00801MR0257325
- Federer, H., Fleming, W.H., Normal and integral currents, Ann. of Math. 72 (1960), 458–520. (1960) Zbl0187.31301MR0123260
- Ferone, V., Posteraro, M.R., Maximization on classes of functions with fixed rearrangement, Differential Integral Equations 4 (1991), 707–718. (1991) Zbl0734.49002MR1108055
- Garsia, A.M., Rodemich, E., Monotonicity of certain functional under rearrangements, Ann. Inst. Fourier (Grenoble) 24 (1974), 67–116. (1974) MR0414802
- Giarrusso, E., Nunziante, D., Symmetrization in a class of first-order Hamilton-Jacobi equations, Nonlinear Anal. 8 (1984), 289–299. (1984) Zbl0543.35014MR0739660
- Hardy, G.H., Littlewood, J.E., Pólya, G., Inequalities, Cambridge Univ. Press, 1964. (1964)
- Herz, C., The Hardy-Littlewood maximal theorem, Symposium on harmonic analysis, Univ. of Warwick, 1968. (1968)
- Hilden, K., Symmetrization of functions in Sobolev spaces and the isoperimetric inequality, Manuscripta Math. 18 (1976), 215–235. (1976) Zbl0365.46031MR0409773
- Hunt, R., On spaces, Enseign. Math. 12 (1966), 249–276. (1966) Zbl0181.40301MR0223874
- Kawohl, B., Rearrangements and convexity of level sets in PDE, Lecture Notes in Math., Vol. 1150, Springer-Verlag, Berlin – New York, 1985. (1985) Zbl0593.35002MR0810619
- Laurence, P., Stredulinsky, E., A new approach to queer differential equations, Comm. Pure Appl. Math. 38 (1985), 333–355. (1985) Zbl0818.35145MR0784478
- Levine, H.A., An estimate for the best constant in a Sobolev inequality involving three integral norms, Ann. Mat. Pura Appl. 124 (1980), 181–197. (1980) Zbl0442.46028MR0591555
- Lieb, E., Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Ann. of Math. 118 (1983), 349–374. (1983) Zbl0527.42011MR0717827
- Lorentz, G.G., Some new functional spaces, Ann. of Math. 51 (1950), 37–55. (1950) Zbl0035.35602MR0033449
- Lorentz, G.G., On the theory of spaces , Pacific J. Math. 1 (1951), 411–429. (1951) Zbl0043.11302MR0044740
- Luxemburg, W.A.J., Zaanen, A.C., Notes on Banach function spaces, Indag. Math. 25, 26, 27 (1965, 1966, 1967). (1965, 1966, 1967)
- Maz, V.G. ’j, Sobolev spaces, Springer-Verlag, Berlin – New York, 1985. (1985) MR0817985
- McLeod, J.B., Rearrangements and extreme values of Dirichlet norms, Unpublished.
- Mitrinović, D.S., Pecarić, J.E., Fink, A.M., Classical and new inequalities in analysis, Kluwer Academic Publishers, 1993. (1993) MR1220224
- Morrey, Ch.B., Multiple integrals in the calculus of variations, Grundlehren der Mathematischen Wissenschaften, Vol. 130, Springer-Verlag, New York, 1966. (1966) Zbl0142.38701MR0202511
- Moser, J., A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J. 20 (1971), 1077–1092. (1971) MR0301504
- O, R. ’Nei, Convolution operators and spaces, Duke Math. J. 30 (1963), 129–142. (1963) MR0146673
- O, R. ’Nei, Weiss, G., The Hilbert transform and rearrangements of functions, Studia Math. 23 (1963), 189–198. (1963) MR0160084
- Ossermann, R., The isoperimetric inequality, Bull. Amer. Math. Soc. 84 (1978), 1182–1238. (1978) MR0500557
- Pelliccia, E., Talenti, G., A proof of a logarithmic Sobolev inequality, Calculus of Variations 1 (1993), 237–242. (1993) Zbl0796.49013MR1261545
- Pólya, G., Szegö, G., Isoperimetric inequalities in mathematical physics, Princeton Univ. Press, 1951. (1951) MR0043486
- Posteraro, M.R., Un’osservazione sul riordinamento del gradiente di una funzione, Rend. Acad. Sci. Fis. Mat. Napoli 4 (1988), no. 55, 10 pp. (1988)
- Riesz, F., Sur une inégalité intégrale, J. London Math. Soc. 5 (1930), 162–168. (1930) MR1574064
- Sobolev, S.L., On a theorem in functional analysis, Mat. Sb. 4 (1938), 471–497. (1938)
- Sobolev, S.L., Applications of functional analysis in mathematical physics, Translations of Mathematical Monographs, Vol. 7, Amer. Math. Soc., 1963. (1963) Zbl0123.09003MR0165337
- Sperner, E., Zur Symmetrisierung für Funktionen auf Sphären, Math. Z. 134 (1973), 317–327. (1973) MR0340558
- Sperner, E., Symmetrisierung für Funktionen mehrerer reeller Variablen, Manuscripta Math. 11 (1974), 159–170. (1974) Zbl0268.26011MR0328000
- Spiegel, W., Über die Symmetrisierung stetiger Funktionen im Euklidischen Raum, Archiv. Math. (Basel) 24 (1973), 545–551. (1973) Zbl0274.52011MR0412365
- Stein, E.M., Weiss, G., Introduction to Fourier analysis on Euclidean spaces, Princeton Mathematical Series, No. 32, Princeton Univ. Press, Princeton, N. J., 1971. (1971) Zbl0232.42007MR0304972
- Talenti, G., Best constant in Sobolev inequality, Ann. Mat. Pura Appl. 110 (1976), 353–372. (1976) Zbl0353.46018MR0463908
- Talenti, G., Elliptic equations and rearrangements, Ann. Scuola Norm. Sup. Pisa 3 (1976), 697–718. (1976) Zbl0341.35031MR0601601
- Talenti, G., Rearrangements and partial differential equations, Inequalities (Birmingham, 1987), Lecture Notes in Pure and Appl. Math., Vol. 129, W.N. Everitt (ed.), Dekker, New York, 1991, pp. 211–230. (1991) MR1112579
- Talenti, G., An inequality between and , General Inequalities, 6 (Oberwolfach, 1990), Internat. Ser. Numer. Math., Vol. 103, W. Walter (ed.), Birkhäuser, Basel, 1992, pp. 175–182. (1992) Zbl0783.26015MR1213004
- Talenti, G., The standard isoperimetric theorem, Handbook of Convex Geometry, P.M. Gruber & J.M. Wills (eds.), Elsevier, 1993, pp. 75–123. (1993) Zbl0799.51015MR1242977
- Talenti, G., On functions whose gradients have a prescribed rearrangement, Inequalities and Applications, World Scientific Publishing Co., to appear. Zbl0886.49009MR1299585
- Ziemer, W.P., Weakly differentiable functions, Graduate Texts in Math., Vol. 120, Springer-Verlag, New York – Berline – Heidelberg – London – Paris – Tokyo – Hong Kong, 1989. (1989) Zbl0692.46022MR1014685
Citations in EuDML Documents
top- Giovanni Alberti, Some remarks about a notion of rearrangement
- Robert Černý, Silvie Mašková, A sharp form of an embedding into multiple exponential spaces
- Andrea Cianchi, Luboš Pick, An optimal endpoint trace embedding
- Robert Černý, Note on the concentration-compactness principle for generalized Moser-Trudinger inequalities
- Robert Černý, Concentration-Compactness Principle for embedding into multiple exponential spaces on unbounded domains
- Pick, Luboš, Optimal Sobolev embeddings
- Cianchi, Andrea, Some results in the theory of Orlicz spaces and applications to variational problems
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.