Inequalities in rearrangement invariant function spaces

Talenti, Giorgio

  • Nonlinear Analysis, Function Spaces and Applications, Publisher: Prometheus Publishing House(Praha), page 177-230

How to cite

top

Talenti, Giorgio. "Inequalities in rearrangement invariant function spaces." Nonlinear Analysis, Function Spaces and Applications. Praha: Prometheus Publishing House, 1994. 177-230. <http://eudml.org/doc/220022>.

@inProceedings{Talenti1994,
author = {Talenti, Giorgio},
booktitle = {Nonlinear Analysis, Function Spaces and Applications},
keywords = {Nonlinear analysis; Function spaces; Proceedings; Spring school; Prague (Czech Republic)},
location = {Praha},
pages = {177-230},
publisher = {Prometheus Publishing House},
title = {Inequalities in rearrangement invariant function spaces},
url = {http://eudml.org/doc/220022},
year = {1994},
}

TY - CLSWK
AU - Talenti, Giorgio
TI - Inequalities in rearrangement invariant function spaces
T2 - Nonlinear Analysis, Function Spaces and Applications
PY - 1994
CY - Praha
PB - Prometheus Publishing House
SP - 177
EP - 230
KW - Nonlinear analysis; Function spaces; Proceedings; Spring school; Prague (Czech Republic)
UR - http://eudml.org/doc/220022
ER -

References

top
  1. Adams, R.A., Sobolev spaces, Academic Press, 1975. (1975) Zbl0314.46030MR0450957
  2. Alvino, A., Sulla disuguaglianza di Sobolev in spazi di Lorentz, Boll. Uni. Mat. Ital. 5 (1977), no. 14A, 148–156. (1977) MR0438106
  3. Alvino, A., Lions, P.L., Trombetti, G., On optimization problems with prescribed rearrangements, Nonlinear Anal. 13 (1989), 185–220. (1989) Zbl0678.49003MR0979040
  4. Aronsson, G., An integral inequality and plastic torsion, Arch. Rational Mech. Anal. 7 (1989), 23–39. (1989) MR0540220
  5. Aronsson, G., Talenti, G., Estimating the integral of a function in terms of a distribution function of its gradient, Boll. Uni. Mat. Ital. 5 (1981), no. 18B, 885–894. (1981) Zbl0476.49030MR0641744
  6. Aubin, T., Problèmes isopérimetriques et espaces de Sobolev, J. Differential Geom. 11 (1976), 573–598. (1976) Zbl0371.46011MR0448404
  7. Baernstein, A., A unified approach to symmetrization, To appear in a forthcoming volume of Sympos. Math. Zbl0830.35005
  8. Bliss, G.A., An integral inequality, J. London Math. Soc. 5 (1930), 40–46. (1930) MR1574997
  9. Brascamp, H.J., Lieb, E.H., Luttinger, J.M., A general rearrangement inequality for multiple integrals, J. Funct. Anal. 17 (1974), 227–237. (1974) Zbl0286.26005MR0346109
  10. Brothers, J., Ziemer, W., Minimal rearrangements of Sobolev functions, J. Reine Angew. Math. 384 (1988), 153–179. (1988) Zbl0633.46030MR0929981
  11. Burago, Yu.D., Zalgaller, V.A., Geometric inequalities, Grundlehren der Mathematischen Wissenschaften, Vol. 285, Springer-Verlag, Berlin – New York, 1988. (1988) Zbl0633.53002MR0936419
  12. Burton, G.R., Variational problems on classes of rearrangements and multiple configurations for steady vortices, Ann. Inst. H. Poincaré Anal. Non Linéaire 6 (1989), 295–319. (1989) Zbl0677.49005MR0998605
  13. Chiti, G., Rearrangements of functions and convergence in Orlicz spaces, Appl. Anal. 9 (1979), 23–27. (1979) Zbl0424.46023MR0536688
  14. Crowe, J.A., Zweibel, J.A., Rearrangements of functions, J. Funct. Anal. 66 (1986), 432–438. (1986) Zbl0612.46027MR0839110
  15. Ehrhard, A., Inégalités isopérimetriques et intégrales de Dirichlet gaussiennes, Ann. Sci. École Norm. Sup. 17 (1984), 317–332. (1984) Zbl0546.49020MR0760680
  16. Eydeland, A., Spruck, J., Turkington, B., Multiconstrained variational problems of nonlinear eigenvalue type: new formulation and algorithms, Math. Comp. 55 (1990), 509–535. (1990) MR1035931
  17. Federer, H., Geometric measure theory, Grundlehren der Mathematischen Wissenschaften, Vol. 153, Springer-Verlag, New York, 1969. (1969) Zbl0176.00801MR0257325
  18. Federer, H., Fleming, W.H., Normal and integral currents, Ann. of Math. 72 (1960), 458–520. (1960) Zbl0187.31301MR0123260
  19. Ferone, V., Posteraro, M.R., Maximization on classes of functions with fixed rearrangement, Differential Integral Equations 4 (1991), 707–718. (1991) Zbl0734.49002MR1108055
  20. Garsia, A.M., Rodemich, E., Monotonicity of certain functional under rearrangements, Ann. Inst. Fourier (Grenoble) 24 (1974), 67–116. (1974) MR0414802
  21. Giarrusso, E., Nunziante, D., Symmetrization in a class of first-order Hamilton-Jacobi equations, Nonlinear Anal. 8 (1984), 289–299. (1984) Zbl0543.35014MR0739660
  22. Hardy, G.H., Littlewood, J.E., Pólya, G., Inequalities, Cambridge Univ. Press, 1964. (1964) 
  23. Herz, C., The Hardy-Littlewood maximal theorem, Symposium on harmonic analysis, Univ. of Warwick, 1968. (1968) 
  24. Hilden, K., Symmetrization of functions in Sobolev spaces and the isoperimetric inequality, Manuscripta Math. 18 (1976), 215–235. (1976) Zbl0365.46031MR0409773
  25. Hunt, R., On L ( p , q ) spaces, Enseign. Math. 12 (1966), 249–276. (1966) Zbl0181.40301MR0223874
  26. Kawohl, B., Rearrangements and convexity of level sets in PDE, Lecture Notes in Math., Vol. 1150, Springer-Verlag, Berlin – New York, 1985. (1985) Zbl0593.35002MR0810619
  27. Laurence, P., Stredulinsky, E., A new approach to queer differential equations, Comm. Pure Appl. Math. 38 (1985), 333–355. (1985) Zbl0818.35145MR0784478
  28. Levine, H.A., An estimate for the best constant in a Sobolev inequality involving three integral norms, Ann. Mat. Pura Appl. 124 (1980), 181–197. (1980) Zbl0442.46028MR0591555
  29. Lieb, E., Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Ann. of Math. 118 (1983), 349–374. (1983) Zbl0527.42011MR0717827
  30. Lorentz, G.G., Some new functional spaces, Ann. of Math. 51 (1950), 37–55. (1950) Zbl0035.35602MR0033449
  31. Lorentz, G.G., On the theory of spaces Λ , Pacific J. Math. 1 (1951), 411–429. (1951) Zbl0043.11302MR0044740
  32. Luxemburg, W.A.J., Zaanen, A.C., Notes on Banach function spaces, Indag. Math. 25, 26, 27 (1965, 1966, 1967). (1965, 1966, 1967) 
  33. Maz, V.G. ’j, Sobolev spaces, Springer-Verlag, Berlin – New York, 1985. (1985) MR0817985
  34. McLeod, J.B., Rearrangements and extreme values of Dirichlet norms, Unpublished. 
  35. Mitrinović, D.S., Pecarić, J.E., Fink, A.M., Classical and new inequalities in analysis, Kluwer Academic Publishers, 1993. (1993) MR1220224
  36. Morrey, Ch.B., Multiple integrals in the calculus of variations, Grundlehren der Mathematischen Wissenschaften, Vol. 130, Springer-Verlag, New York, 1966. (1966) Zbl0142.38701MR0202511
  37. Moser, J., A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J. 20 (1971), 1077–1092. (1971) MR0301504
  38. O, R. ’Nei, Convolution operators and L ( p , q ) spaces, Duke Math. J. 30 (1963), 129–142. (1963) MR0146673
  39. O, R. ’Nei, Weiss, G., The Hilbert transform and rearrangements of functions, Studia Math. 23 (1963), 189–198. (1963) MR0160084
  40. Ossermann, R., The isoperimetric inequality, Bull. Amer. Math. Soc. 84 (1978), 1182–1238. (1978) MR0500557
  41. Pelliccia, E., Talenti, G., A proof of a logarithmic Sobolev inequality, Calculus of Variations 1 (1993), 237–242. (1993) Zbl0796.49013MR1261545
  42. Pólya, G., Szegö, G., Isoperimetric inequalities in mathematical physics, Princeton Univ. Press, 1951. (1951) MR0043486
  43. Posteraro, M.R., Un’osservazione sul riordinamento del gradiente di una funzione, Rend. Acad. Sci. Fis. Mat. Napoli 4 (1988), no. 55, 10 pp. (1988) 
  44. Riesz, F., Sur une inégalité intégrale, J. London Math. Soc. 5 (1930), 162–168. (1930) MR1574064
  45. Sobolev, S.L., On a theorem in functional analysis, Mat. Sb. 4 (1938), 471–497. (1938) 
  46. Sobolev, S.L., Applications of functional analysis in mathematical physics, Translations of Mathematical Monographs, Vol. 7, Amer. Math. Soc., 1963. (1963) Zbl0123.09003MR0165337
  47. Sperner, E., Zur Symmetrisierung für Funktionen auf Sphären, Math. Z. 134 (1973), 317–327. (1973) MR0340558
  48. Sperner, E., Symmetrisierung für Funktionen mehrerer reeller Variablen, Manuscripta Math. 11 (1974), 159–170. (1974) Zbl0268.26011MR0328000
  49. Spiegel, W., Über die Symmetrisierung stetiger Funktionen im Euklidischen Raum, Archiv. Math. (Basel) 24 (1973), 545–551. (1973) Zbl0274.52011MR0412365
  50. Stein, E.M., Weiss, G., Introduction to Fourier analysis on Euclidean spaces, Princeton Mathematical Series, No. 32, Princeton Univ. Press, Princeton, N. J., 1971. (1971) Zbl0232.42007MR0304972
  51. Talenti, G., Best constant in Sobolev inequality, Ann. Mat. Pura Appl. 110 (1976), 353–372. (1976) Zbl0353.46018MR0463908
  52. Talenti, G., Elliptic equations and rearrangements, Ann. Scuola Norm. Sup. Pisa 3 (1976), 697–718. (1976) Zbl0341.35031MR0601601
  53. Talenti, G., Rearrangements and partial differential equations, Inequalities (Birmingham, 1987), Lecture Notes in Pure and Appl. Math., Vol. 129, W.N. Everitt (ed.), Dekker, New York, 1991, pp. 211–230. (1991) MR1112579
  54. Talenti, G., An inequality between u * and | grad u | * , General Inequalities, 6 (Oberwolfach, 1990), Internat. Ser. Numer. Math., Vol. 103, W. Walter (ed.), Birkhäuser, Basel, 1992, pp. 175–182. (1992) Zbl0783.26015MR1213004
  55. Talenti, G., The standard isoperimetric theorem, Handbook of Convex Geometry, P.M. Gruber & J.M. Wills (eds.), Elsevier, 1993, pp. 75–123. (1993) Zbl0799.51015MR1242977
  56. Talenti, G., On functions whose gradients have a prescribed rearrangement, Inequalities and Applications, World Scientific Publishing Co., to appear. Zbl0886.49009MR1299585
  57. Ziemer, W.P., Weakly differentiable functions, Graduate Texts in Math., Vol. 120, Springer-Verlag, New York – Berline – Heidelberg – London – Paris – Tokyo – Hong Kong, 1989. (1989) Zbl0692.46022MR1014685

Citations in EuDML Documents

top
  1. Giovanni Alberti, Some remarks about a notion of rearrangement
  2. Robert Černý, Silvie Mašková, A sharp form of an embedding into multiple exponential spaces
  3. Andrea Cianchi, Luboš Pick, An optimal endpoint trace embedding
  4. Robert Černý, Note on the concentration-compactness principle for generalized Moser-Trudinger inequalities
  5. Robert Černý, Concentration-Compactness Principle for embedding into multiple exponential spaces on unbounded domains
  6. Pick, Luboš, Optimal Sobolev embeddings
  7. Cianchi, Andrea, Some results in the theory of Orlicz spaces and applications to variational problems

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.