Rational periodic points for quadratic maps
- [1] Université Lille 1 Laboratoire Paul Painlevé, Mathématiques 59655 Villeneuve d’Ascq Cedex (France)
Annales de l’institut Fourier (2010)
- Volume: 60, Issue: 3, page 953-985
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topCanci, Jung Kyu. "Rational periodic points for quadratic maps." Annales de l’institut Fourier 60.3 (2010): 953-985. <http://eudml.org/doc/116297>.
@article{Canci2010,
abstract = {Let $K$ be a number field. Let $S$ be a finite set of places of $K$ containing all the archimedean ones. Let $R_S$ be the ring of $S$-integers of $K$. In the present paper we consider endomorphisms of $\mathbb\{P\}_1$ of degree $2$, defined over $K$, with good reduction outside $S$. We prove that there exist only finitely many such endomorphisms, up to conjugation by $\{\rm PGL\}_2(R_S)$, admitting a periodic point in $\mathbb\{P\}_1(K)$ of order $>3$. Also, all but finitely many classes with a periodic point in $\mathbb\{P\}_1(K)$ of order $3$ are parametrized by an irreducible curve.},
affiliation = {Université Lille 1 Laboratoire Paul Painlevé, Mathématiques 59655 Villeneuve d’Ascq Cedex (France)},
author = {Canci, Jung Kyu},
journal = {Annales de l’institut Fourier},
keywords = {Rational maps; moduli spaces; $S$-unit equations; reduction modulo $\mathfrak\{p\}$; rational maps; -unit equations; reduction modulo },
language = {eng},
number = {3},
pages = {953-985},
publisher = {Association des Annales de l’institut Fourier},
title = {Rational periodic points for quadratic maps},
url = {http://eudml.org/doc/116297},
volume = {60},
year = {2010},
}
TY - JOUR
AU - Canci, Jung Kyu
TI - Rational periodic points for quadratic maps
JO - Annales de l’institut Fourier
PY - 2010
PB - Association des Annales de l’institut Fourier
VL - 60
IS - 3
SP - 953
EP - 985
AB - Let $K$ be a number field. Let $S$ be a finite set of places of $K$ containing all the archimedean ones. Let $R_S$ be the ring of $S$-integers of $K$. In the present paper we consider endomorphisms of $\mathbb{P}_1$ of degree $2$, defined over $K$, with good reduction outside $S$. We prove that there exist only finitely many such endomorphisms, up to conjugation by ${\rm PGL}_2(R_S)$, admitting a periodic point in $\mathbb{P}_1(K)$ of order $>3$. Also, all but finitely many classes with a periodic point in $\mathbb{P}_1(K)$ of order $3$ are parametrized by an irreducible curve.
LA - eng
KW - Rational maps; moduli spaces; $S$-unit equations; reduction modulo $\mathfrak{p}$; rational maps; -unit equations; reduction modulo
UR - http://eudml.org/doc/116297
ER -
References
top- Robert L. Benedetto, Reduction, dynamics, and Julia sets of rational functions, J. Number Theory 86 (2001), 175-195 Zbl0978.37039MR1813109
- B. J. Birch, J. R. Merriman, Finiteness theorems for binary forms with given discriminant, Proc. London Math. Soc. (3) 24 (1972), 385-394 Zbl0248.12002MR306119
- Enrico Bombieri, Walter Gubler, Heights in Diophantine Geometry, (2006), Cambridge University Press, Cambridge Zbl1115.11034MR2216774
- Jung Kyu Canci, Cycles for rational maps with good reduction outside a prescribed set, Monatsh. Math. 149 (2007), 265-287 Zbl1171.11041MR2284648
- Pietro Corvaja, Umberto Zannier, A lower bound for the height of a rational function at -unit points, Monatsh. Math. 144 (2005), 203-224 Zbl1086.11035MR2130274
- Laura DeMarco, Dynamics of rational maps: Lyapunov exponents, bifurcations, and capacity, Math. Ann. 326 (2003), 43-73 Zbl1032.37029MR1981611
- J.-H. Evertse, K. Győry, Effective finiteness results for binary forms with given discriminant, Compositio Math. 79 (1991), 169-204 Zbl0746.11020MR1117339
- Jan-Hendrik Evertse, On sums of -units and linear recurrences, Compositio Math. 53 (1984), 225-244 Zbl0547.10008MR766298
- Marc Hindry, Joseph H. Silverman, Diophantine Geometry, 201 (2000), Springer-Verlag, New York Zbl0948.11023MR1745599
- Serge Lang, Algebra, 211 (2002), Springer-Verlag, New York Zbl0984.00001MR1878556
- Daniel A. Marcus, Number fields, (1977), Springer-Verlag, New York Zbl0383.12001MR457396
- John Milnor, Geometry and dynamics of quadratic rational maps, Experiment. Math. 2 (1993), 37-83 Zbl0922.58062MR1246482
- Patrick Morton, Joseph H. Silverman, Rational periodic points of rational functions, Internat. Math. Res. Notices (1994), 97-110 Zbl0819.11045MR1264933
- Patrick Morton, Joseph H. Silverman, Periodic points, multiplicities, and dynamical units, J. Reine Angew. Math. 461 (1995), 81-122 Zbl0813.11059MR1324210
- A. J. van der Poorten, H. P. Schlickewei, The growth condition for recurrence sequences, (1982)
- Wolfgang Schmidt, Diophantine Approximation, 785 (1980), Springer, Berlin Zbl0421.10019MR568710
- Wolfgang M. Schmidt, Diophantine approximations and Diophantine equations, 1467 (1991), Springer-Verlag, Berlin Zbl0754.11020MR1176315
- Jean-Pierre Serre, Lectures on the Mordell-Weil Theorem, (1997), Friedr. Vieweg & Sohn, Braunschweig Zbl0676.14005MR1757192
- Joseph H. Silverman, The space of rational maps on , Duke Math. J. 94 (1998), 41-77 Zbl0966.14031MR1635900
- Joseph H. Silverman, The arithmetic of dynamical systems, 241 (2007), Springer, New York Zbl1130.37001MR2316407
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.