extension of adjoint line bundle sections
Dano Kim[1]
- [1] University of Chicago Dept. of Mathematics 5734 S. University Ave. Chicago, IL 60637 (USA)
Annales de l’institut Fourier (2010)
- Volume: 60, Issue: 4, page 1435-1477
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topKim, Dano. "$L^2$ extension of adjoint line bundle sections." Annales de l’institut Fourier 60.4 (2010): 1435-1477. <http://eudml.org/doc/116309>.
@article{Kim2010,
abstract = {We prove an extension theorem of Ohsawa-Takegoshi type for line bundle sections on a subvariety of general codimension in a normal projective variety. Our method of proof gives conditions to be satisfied for such extension in a general setting, while such conditions are satisfied when the subvariety is given by an appropriate multiplier ideal sheaf.},
affiliation = {University of Chicago Dept. of Mathematics 5734 S. University Ave. Chicago, IL 60637 (USA)},
author = {Kim, Dano},
journal = {Annales de l’institut Fourier},
keywords = {$L^2$ extension; multiplier ideal sheaf; pluricanonical line bundle; -extension; multplier ideal sheaf},
language = {eng},
number = {4},
pages = {1435-1477},
publisher = {Association des Annales de l’institut Fourier},
title = {$L^2$ extension of adjoint line bundle sections},
url = {http://eudml.org/doc/116309},
volume = {60},
year = {2010},
}
TY - JOUR
AU - Kim, Dano
TI - $L^2$ extension of adjoint line bundle sections
JO - Annales de l’institut Fourier
PY - 2010
PB - Association des Annales de l’institut Fourier
VL - 60
IS - 4
SP - 1435
EP - 1477
AB - We prove an extension theorem of Ohsawa-Takegoshi type for line bundle sections on a subvariety of general codimension in a normal projective variety. Our method of proof gives conditions to be satisfied for such extension in a general setting, while such conditions are satisfied when the subvariety is given by an appropriate multiplier ideal sheaf.
LA - eng
KW - $L^2$ extension; multiplier ideal sheaf; pluricanonical line bundle; -extension; multplier ideal sheaf
UR - http://eudml.org/doc/116309
ER -
References
top- Urban Angehrn, Yum Tong Siu, Effective freeness and point separation for adjoint bundles, Invent. Math. 122 (1995), 291-308 Zbl0847.32035MR1358978
- Bo Berndtsson, The extension theorem of Ohsawa-Takegoshi and the theorem of Donnelly-Fefferman, Ann. Inst. Fourier (Grenoble) 46 (1996), 1083-1094 Zbl0853.32024MR1415958
- Jean-Pierre Demailly, Complex analytic and differential geometry Zbl1102.14300
- Jean-Pierre Demailly, vanishing theorems for positive line bundles and adjunction theory, Transcendental methods in algebraic geometry (Cetraro, 1994) 1646 (1996), 1-97, Springer, Berlin Zbl0883.14005MR1603616
- Jean-Pierre Demailly, On the Ohsawa-Takegoshi-Manivel extension theorem, Complex analysis and geometry (Paris, 1997) 188 (2000), 47-82, Birkhäuser, Basel Zbl0959.32019MR2524080
- Osamu Fujino, Applications of Kawamata’s positivity theorem, Proc. Japan Acad. Ser. A Math. Sci. 75 (1999), 75-79 Zbl0967.14012MR1712648
- Osamu Fujino, A Memorandum on the invariance of plurigenera, (2006) Zbl1127.14047
- Hans Grauert, Reinhold Remmert, Coherent analytic sheaves, 265 (1984), Springer-Verlag, Berlin Zbl0537.32001MR755331
- Phillip Griffiths, Joseph Harris, Principles of algebraic geometry, (1978), Wiley-Interscience [John Wiley & Sons], New York Zbl0408.14001MR507725
- Phillip A. Griffiths, Variations on a theorem of Abel, Invent. Math. 35 (1976), 321-390 Zbl0339.14003MR435074
- Robert C. Gunning, Hugo Rossi, Analytic functions of several complex variables, (1965), Prentice-Hall Inc., Englewood Cliffs, N.J. Zbl0141.08601MR180696
- Robin Hartshorne, Algebraic geometry, (1977), Springer-Verlag, New York Zbl0367.14001MR463157
- Lars Hörmander, estimates and existence theorems for the operator, Acta Math. 113 (1965), 89-152 Zbl0158.11002MR179443
- Yujiro Kawamata, On Fujita’s freeness conjecture for -folds and -folds, Math. Ann. 308 (1997), 491-505 Zbl0909.14001MR1457742
- Yujiro Kawamata, Subadjunction of log canonical divisors. II, Amer. J. Math. 120 (1998), 893-899 Zbl0919.14003MR1646046
- János Kollár, Singularities of pairs, Algebraic geometry—Santa Cruz 1995 62 (1997), 221-287, Amer. Math. Soc., Providence, RI Zbl0905.14002
- János Kollár, Kodaira’s canonical bundle formula and adjunction, Flips for 3-folds and 4-folds 35 (2007), 134-162, Oxford Univ. Press, Oxford Zbl1286.14027MR2359346
- Robert Lazarsfeld, Positivity in algebraic geometry, 48-49 (2004), Springer-Verlag, Berlin Zbl1093.14500
- P. Lelong, Plurisubharmonic functions and positive differential forms, (1969), Gordon and Breach, New York Zbl0195.11604
- Laurent Manivel, Un théorème de prolongement de sections holomorphes d’un fibré hermitien, Math. Z. 212 (1993), 107-122 Zbl0789.32015MR1200166
- Jeffery D. McNeal, estimates on twisted Cauchy-Riemann complexes, 150 years of mathematics at Washington University in St. Louis 395 (2006), 83-103, Amer. Math. Soc., Providence, RI Zbl1106.32027MR2206894
- Jeffery D. McNeal, Dror Varolin, Analytic inversion of adjunction: extension theorems with gain, Ann. Inst. Fourier (Grenoble) 57 (2007), 703-718 Zbl1208.32011MR2336826
- Takeo Ohsawa, On the extension of holomorphic functions. III. Negligible weights, Math. Z. 219 (1995), 215-225 Zbl0823.32006MR1337216
- Takeo Ohsawa, Kenshō Takegoshi, On the extension of holomorphic functions, Math. Z. 195 (1987), 197-204 Zbl0625.32011MR892051
- M. Păun, Siu’s Invariance of Plurigenera: a One-Tower Proof, J. Differential Geom. 76 (2007), 485-493 Zbl1122.32014MR2331528
- Thomas Ransford, Potential theory in the complex plane, 28 (1995), Cambridge University Press, Cambridge Zbl0828.31001MR1334766
- Walter Rudin, Functional analysis, (1991), McGraw-Hill Inc., New York Zbl0867.46001MR1157815
- Yum-Tong Siu, The Fujita conjecture and the extension theorem of Ohsawa-Takegoshi, Geometric complex analysis (Hayama, 1995) (1996), 577-592, World Sci. Publ., River Edge, NJ Zbl0941.32021MR1453639
- Yum-Tong Siu, Invariance of plurigenera, Invent. Math. 134 (1998), 661-673 Zbl0955.32017MR1660941
- Yum-Tong Siu, Extension of twisted pluricanonical sections with plurisubharmonic weight and invariance of semipositively twisted plurigenera for manifolds not necessarily of general type, Complex geometry (Göttingen, 2000) (2002), 223-277, Springer, Berlin Zbl1007.32010MR1922108
- Henri Skoda, Application des techniques à la théorie des idéaux d’une algèbre de fonctions holomorphes avec poids, Ann. Sci. École Norm. Sup. (4) 5 (1972), 545-579 Zbl0254.32017MR333246
- Shigeharu Takayama, Pluricanonical systems on algebraic varieties of general type, Invent. Math. 165 (2006), 551-587 Zbl1108.14031MR2242627
- Dror Varolin, Analytic Methods in Algebraic Geometry, (2007), Stony Brook University Zbl1139.32010
- Dror Varolin, A Takayama-type extension theorem, Compos. Math. 144 (2008), 522-540 Zbl1163.32008MR2406122
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.