L 2 extension of adjoint line bundle sections

Dano Kim[1]

  • [1] University of Chicago Dept. of Mathematics 5734 S. University Ave. Chicago, IL 60637 (USA)

Annales de l’institut Fourier (2010)

  • Volume: 60, Issue: 4, page 1435-1477
  • ISSN: 0373-0956

Abstract

top
We prove an extension theorem of Ohsawa-Takegoshi type for line bundle sections on a subvariety of general codimension in a normal projective variety. Our method of proof gives conditions to be satisfied for such extension in a general setting, while such conditions are satisfied when the subvariety is given by an appropriate multiplier ideal sheaf.

How to cite

top

Kim, Dano. "$L^2$ extension of adjoint line bundle sections." Annales de l’institut Fourier 60.4 (2010): 1435-1477. <http://eudml.org/doc/116309>.

@article{Kim2010,
abstract = {We prove an extension theorem of Ohsawa-Takegoshi type for line bundle sections on a subvariety of general codimension in a normal projective variety. Our method of proof gives conditions to be satisfied for such extension in a general setting, while such conditions are satisfied when the subvariety is given by an appropriate multiplier ideal sheaf.},
affiliation = {University of Chicago Dept. of Mathematics 5734 S. University Ave. Chicago, IL 60637 (USA)},
author = {Kim, Dano},
journal = {Annales de l’institut Fourier},
keywords = {$L^2$ extension; multiplier ideal sheaf; pluricanonical line bundle; -extension; multplier ideal sheaf},
language = {eng},
number = {4},
pages = {1435-1477},
publisher = {Association des Annales de l’institut Fourier},
title = {$L^2$ extension of adjoint line bundle sections},
url = {http://eudml.org/doc/116309},
volume = {60},
year = {2010},
}

TY - JOUR
AU - Kim, Dano
TI - $L^2$ extension of adjoint line bundle sections
JO - Annales de l’institut Fourier
PY - 2010
PB - Association des Annales de l’institut Fourier
VL - 60
IS - 4
SP - 1435
EP - 1477
AB - We prove an extension theorem of Ohsawa-Takegoshi type for line bundle sections on a subvariety of general codimension in a normal projective variety. Our method of proof gives conditions to be satisfied for such extension in a general setting, while such conditions are satisfied when the subvariety is given by an appropriate multiplier ideal sheaf.
LA - eng
KW - $L^2$ extension; multiplier ideal sheaf; pluricanonical line bundle; -extension; multplier ideal sheaf
UR - http://eudml.org/doc/116309
ER -

References

top
  1. Urban Angehrn, Yum Tong Siu, Effective freeness and point separation for adjoint bundles, Invent. Math. 122 (1995), 291-308 Zbl0847.32035MR1358978
  2. Bo Berndtsson, The extension theorem of Ohsawa-Takegoshi and the theorem of Donnelly-Fefferman, Ann. Inst. Fourier (Grenoble) 46 (1996), 1083-1094 Zbl0853.32024MR1415958
  3. Jean-Pierre Demailly, Complex analytic and differential geometry Zbl1102.14300
  4. Jean-Pierre Demailly, L 2 vanishing theorems for positive line bundles and adjunction theory, Transcendental methods in algebraic geometry (Cetraro, 1994) 1646 (1996), 1-97, Springer, Berlin Zbl0883.14005MR1603616
  5. Jean-Pierre Demailly, On the Ohsawa-Takegoshi-Manivel L 2 extension theorem, Complex analysis and geometry (Paris, 1997) 188 (2000), 47-82, Birkhäuser, Basel Zbl0959.32019MR2524080
  6. Osamu Fujino, Applications of Kawamata’s positivity theorem, Proc. Japan Acad. Ser. A Math. Sci. 75 (1999), 75-79 Zbl0967.14012MR1712648
  7. Osamu Fujino, A Memorandum on the invariance of plurigenera, (2006) Zbl1127.14047
  8. Hans Grauert, Reinhold Remmert, Coherent analytic sheaves, 265 (1984), Springer-Verlag, Berlin Zbl0537.32001MR755331
  9. Phillip Griffiths, Joseph Harris, Principles of algebraic geometry, (1978), Wiley-Interscience [John Wiley & Sons], New York Zbl0408.14001MR507725
  10. Phillip A. Griffiths, Variations on a theorem of Abel, Invent. Math. 35 (1976), 321-390 Zbl0339.14003MR435074
  11. Robert C. Gunning, Hugo Rossi, Analytic functions of several complex variables, (1965), Prentice-Hall Inc., Englewood Cliffs, N.J. Zbl0141.08601MR180696
  12. Robin Hartshorne, Algebraic geometry, (1977), Springer-Verlag, New York Zbl0367.14001MR463157
  13. Lars Hörmander, L 2 estimates and existence theorems for the ¯ operator, Acta Math. 113 (1965), 89-152 Zbl0158.11002MR179443
  14. Yujiro Kawamata, On Fujita’s freeness conjecture for 3 -folds and 4 -folds, Math. Ann. 308 (1997), 491-505 Zbl0909.14001MR1457742
  15. Yujiro Kawamata, Subadjunction of log canonical divisors. II, Amer. J. Math. 120 (1998), 893-899 Zbl0919.14003MR1646046
  16. János Kollár, Singularities of pairs, Algebraic geometry—Santa Cruz 1995 62 (1997), 221-287, Amer. Math. Soc., Providence, RI Zbl0905.14002
  17. János Kollár, Kodaira’s canonical bundle formula and adjunction, Flips for 3-folds and 4-folds 35 (2007), 134-162, Oxford Univ. Press, Oxford Zbl1286.14027MR2359346
  18. Robert Lazarsfeld, Positivity in algebraic geometry, 48-49 (2004), Springer-Verlag, Berlin Zbl1093.14500
  19. P. Lelong, Plurisubharmonic functions and positive differential forms, (1969), Gordon and Breach, New York Zbl0195.11604
  20. Laurent Manivel, Un théorème de prolongement L 2 de sections holomorphes d’un fibré hermitien, Math. Z. 212 (1993), 107-122 Zbl0789.32015MR1200166
  21. Jeffery D. McNeal, L 2 estimates on twisted Cauchy-Riemann complexes, 150 years of mathematics at Washington University in St. Louis 395 (2006), 83-103, Amer. Math. Soc., Providence, RI Zbl1106.32027MR2206894
  22. Jeffery D. McNeal, Dror Varolin, Analytic inversion of adjunction: L 2 extension theorems with gain, Ann. Inst. Fourier (Grenoble) 57 (2007), 703-718 Zbl1208.32011MR2336826
  23. Takeo Ohsawa, On the extension of L 2 holomorphic functions. III. Negligible weights, Math. Z. 219 (1995), 215-225 Zbl0823.32006MR1337216
  24. Takeo Ohsawa, Kenshō Takegoshi, On the extension of L 2 holomorphic functions, Math. Z. 195 (1987), 197-204 Zbl0625.32011MR892051
  25. M. Păun, Siu’s Invariance of Plurigenera: a One-Tower Proof, J. Differential Geom. 76 (2007), 485-493 Zbl1122.32014MR2331528
  26. Thomas Ransford, Potential theory in the complex plane, 28 (1995), Cambridge University Press, Cambridge Zbl0828.31001MR1334766
  27. Walter Rudin, Functional analysis, (1991), McGraw-Hill Inc., New York Zbl0867.46001MR1157815
  28. Yum-Tong Siu, The Fujita conjecture and the extension theorem of Ohsawa-Takegoshi, Geometric complex analysis (Hayama, 1995) (1996), 577-592, World Sci. Publ., River Edge, NJ Zbl0941.32021MR1453639
  29. Yum-Tong Siu, Invariance of plurigenera, Invent. Math. 134 (1998), 661-673 Zbl0955.32017MR1660941
  30. Yum-Tong Siu, Extension of twisted pluricanonical sections with plurisubharmonic weight and invariance of semipositively twisted plurigenera for manifolds not necessarily of general type, Complex geometry (Göttingen, 2000) (2002), 223-277, Springer, Berlin Zbl1007.32010MR1922108
  31. Henri Skoda, Application des techniques L 2 à la théorie des idéaux d’une algèbre de fonctions holomorphes avec poids, Ann. Sci. École Norm. Sup. (4) 5 (1972), 545-579 Zbl0254.32017MR333246
  32. Shigeharu Takayama, Pluricanonical systems on algebraic varieties of general type, Invent. Math. 165 (2006), 551-587 Zbl1108.14031MR2242627
  33. Dror Varolin, Analytic Methods in Algebraic Geometry, (2007), Stony Brook University Zbl1139.32010
  34. Dror Varolin, A Takayama-type extension theorem, Compos. Math. 144 (2008), 522-540 Zbl1163.32008MR2406122

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.