Schwarz Reflection Principle, Boundary Regularity and Compactness for J -Complex Curves

Sergey Ivashkovich[1]; Alexandre Sukhov[2]

  • [1] U.F.R. de Mathématiques Université de Lille-1 59655 Villeneuve d’Ascq (France) and IAPMM Acad. Sci. Ukraine Lviv, Naukova 3b, 79601 Ukraine (Ukraine)
  • [2] U.F.R. de Mathématiques Université de Lille-1 59655 Villeneuve d’Ascq (France)

Annales de l’institut Fourier (2010)

  • Volume: 60, Issue: 4, page 1489-1513
  • ISSN: 0373-0956

Abstract

top
We establish the Schwarz Reflection Principle for J -complex discs attached to a real analytic J -totally real submanifold of an almost complex manifold with real analytic J . We also prove the precise boundary regularity and derive the precise convergence in Gromov compactness theorem in 𝒞 k , α -classes.

How to cite

top

Ivashkovich, Sergey, and Sukhov, Alexandre. "Schwarz Reflection Principle, Boundary Regularity and Compactness for $J$-Complex Curves." Annales de l’institut Fourier 60.4 (2010): 1489-1513. <http://eudml.org/doc/116311>.

@article{Ivashkovich2010,
abstract = {We establish the Schwarz Reflection Principle for $J$-complex discs attached to a real analytic $J$-totally real submanifold of an almost complex manifold with real analytic $J$. We also prove the precise boundary regularity and derive the precise convergence in Gromov compactness theorem in $\mathcal\{C\}^\{k,\alpha \}$-classes.},
affiliation = {U.F.R. de Mathématiques Université de Lille-1 59655 Villeneuve d’Ascq (France) and IAPMM Acad. Sci. Ukraine Lviv, Naukova 3b, 79601 Ukraine (Ukraine); U.F.R. de Mathématiques Université de Lille-1 59655 Villeneuve d’Ascq (France)},
author = {Ivashkovich, Sergey, Sukhov, Alexandre},
journal = {Annales de l’institut Fourier},
keywords = {Almost complex structure; totally real manifold; holomorphic disc; reflection principle; almost complex structure},
language = {eng},
number = {4},
pages = {1489-1513},
publisher = {Association des Annales de l’institut Fourier},
title = {Schwarz Reflection Principle, Boundary Regularity and Compactness for $J$-Complex Curves},
url = {http://eudml.org/doc/116311},
volume = {60},
year = {2010},
}

TY - JOUR
AU - Ivashkovich, Sergey
AU - Sukhov, Alexandre
TI - Schwarz Reflection Principle, Boundary Regularity and Compactness for $J$-Complex Curves
JO - Annales de l’institut Fourier
PY - 2010
PB - Association des Annales de l’institut Fourier
VL - 60
IS - 4
SP - 1489
EP - 1513
AB - We establish the Schwarz Reflection Principle for $J$-complex discs attached to a real analytic $J$-totally real submanifold of an almost complex manifold with real analytic $J$. We also prove the precise boundary regularity and derive the precise convergence in Gromov compactness theorem in $\mathcal{C}^{k,\alpha }$-classes.
LA - eng
KW - Almost complex structure; totally real manifold; holomorphic disc; reflection principle; almost complex structure
UR - http://eudml.org/doc/116311
ER -

References

top
  1. H. Alexander, Continuing 1 -dimensional Analytic Sets., Math. Ann. 191 (1971), 143-144 Zbl0211.10204MR283236
  2. L. Bers, F. John, M. Schechter, Partial differential equations, (1964), J. Wiley and Sons Zbl0126.00207MR162045
  3. C. Carathéodory, Zum Schwarzschen Spiegelungsprinzip, Comm. Math. Helv. 19 (1946), 263-278 MR20144
  4. E. Chirka, Regularity of boundaries of analytic sets, Math. USSR Sbornik 43 (1983), 291-335 Zbl0525.32005MR648411
  5. B. Coupet, H. Gaussier, A. Sukhov, Fefferman’s mapping theorem on almost complex manifold in complex dimension two, Math. Z. 250 (2005), 59-90 Zbl1076.32028MR2136668
  6. V. Fromm, Gromov Compactness in Hölder Spaces and Minimal Connections on Jet Bundles, math. SG/0808.0415 
  7. H. Gaussier, A. Sukhov, On the geometry of model almost complex manifolds with boundary, Math. Z. 254 (2006), 567-589 Zbl1107.32009MR2244367
  8. S. Ivashkovich, J.-P. Rosay, Schwarz-type lemmas for solutions of ¯ -inequalities and complete hyperbolicity of almost complex manifolds, Annales Inst. Fourier 54 (2004), 2387-2435 Zbl1072.32007MR2139698
  9. S. Ivashkovich, V. Shevchishin, Gromov Compactness Theorem for J -Complex Curves with Boundary, Int. Math. Res. Notices 22 (2000), 1167-1206 Zbl0994.53010MR1807156
  10. S. Ivashkovich, V. Shevchishin, Reflection Principle and J -Complex Curves with Boundary on Totally Real Immersions, Communications in Contemporary Mathematics 4 (2002), 65-106 Zbl1025.32024MR1890078
  11. L. Lempert, R. Szöke, The tangent bundle of an almost complex manifold, Canad. Math. Bull. 44 (2001), 70-79 Zbl0984.53029MR1816050
  12. D. McDuff, D. Salamon, J -holomorphic curves and symplectic topology, 52 (2004), AMS, Providence, RI Zbl1064.53051MR2045629
  13. V. Monakhov, Boundary-value problems with free boundary for elliptic systems of equations, 57 (1983), AMS, Providence, RI Zbl0532.35001MR717387
  14. C. Morrey, Multiple integrals in the calculus of variations, (1966), Springer Verlag Zbl0142.38701MR202511
  15. H. A. Schwarz, Über einige Abbildungsaufgaben, Journal für reine und angewandte Mathematik 70 (1869), 105-120 (see pages 106–107) 
  16. J.-C. Sikorav, Some properties of holomorphic curves in almost complex manifolds, Holomorphic curves in symplectic geometry 117 (1994), 165-189, M. Audin, J. Lafontaine MR1274929
  17. H. Triebel, Theory of Function Spaces, (1983), Birkhäuser Zbl0546.46028MR781540
  18. I. N. Vekua, Generalized analytic functions, (1959), Fizmatgiz, Moscow Zbl0092.29703MR108572
  19. K. Yano, Sh. Ishihara, Tangent and cotangent bundles, (1973), Marcel Dekker, NY Zbl0262.53024MR350650

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.