Schwarz Reflection Principle, Boundary Regularity and Compactness for -Complex Curves
Sergey Ivashkovich[1]; Alexandre Sukhov[2]
- [1] U.F.R. de Mathématiques Université de Lille-1 59655 Villeneuve d’Ascq (France) and IAPMM Acad. Sci. Ukraine Lviv, Naukova 3b, 79601 Ukraine (Ukraine)
- [2] U.F.R. de Mathématiques Université de Lille-1 59655 Villeneuve d’Ascq (France)
Annales de l’institut Fourier (2010)
- Volume: 60, Issue: 4, page 1489-1513
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topIvashkovich, Sergey, and Sukhov, Alexandre. "Schwarz Reflection Principle, Boundary Regularity and Compactness for $J$-Complex Curves." Annales de l’institut Fourier 60.4 (2010): 1489-1513. <http://eudml.org/doc/116311>.
@article{Ivashkovich2010,
abstract = {We establish the Schwarz Reflection Principle for $J$-complex discs attached to a real analytic $J$-totally real submanifold of an almost complex manifold with real analytic $J$. We also prove the precise boundary regularity and derive the precise convergence in Gromov compactness theorem in $\mathcal\{C\}^\{k,\alpha \}$-classes.},
affiliation = {U.F.R. de Mathématiques Université de Lille-1 59655 Villeneuve d’Ascq (France) and IAPMM Acad. Sci. Ukraine Lviv, Naukova 3b, 79601 Ukraine (Ukraine); U.F.R. de Mathématiques Université de Lille-1 59655 Villeneuve d’Ascq (France)},
author = {Ivashkovich, Sergey, Sukhov, Alexandre},
journal = {Annales de l’institut Fourier},
keywords = {Almost complex structure; totally real manifold; holomorphic disc; reflection principle; almost complex structure},
language = {eng},
number = {4},
pages = {1489-1513},
publisher = {Association des Annales de l’institut Fourier},
title = {Schwarz Reflection Principle, Boundary Regularity and Compactness for $J$-Complex Curves},
url = {http://eudml.org/doc/116311},
volume = {60},
year = {2010},
}
TY - JOUR
AU - Ivashkovich, Sergey
AU - Sukhov, Alexandre
TI - Schwarz Reflection Principle, Boundary Regularity and Compactness for $J$-Complex Curves
JO - Annales de l’institut Fourier
PY - 2010
PB - Association des Annales de l’institut Fourier
VL - 60
IS - 4
SP - 1489
EP - 1513
AB - We establish the Schwarz Reflection Principle for $J$-complex discs attached to a real analytic $J$-totally real submanifold of an almost complex manifold with real analytic $J$. We also prove the precise boundary regularity and derive the precise convergence in Gromov compactness theorem in $\mathcal{C}^{k,\alpha }$-classes.
LA - eng
KW - Almost complex structure; totally real manifold; holomorphic disc; reflection principle; almost complex structure
UR - http://eudml.org/doc/116311
ER -
References
top- H. Alexander, Continuing -dimensional Analytic Sets., Math. Ann. 191 (1971), 143-144 Zbl0211.10204MR283236
- L. Bers, F. John, M. Schechter, Partial differential equations, (1964), J. Wiley and Sons Zbl0126.00207MR162045
- C. Carathéodory, Zum Schwarzschen Spiegelungsprinzip, Comm. Math. Helv. 19 (1946), 263-278 MR20144
- E. Chirka, Regularity of boundaries of analytic sets, Math. USSR Sbornik 43 (1983), 291-335 Zbl0525.32005MR648411
- B. Coupet, H. Gaussier, A. Sukhov, Fefferman’s mapping theorem on almost complex manifold in complex dimension two, Math. Z. 250 (2005), 59-90 Zbl1076.32028MR2136668
- V. Fromm, Gromov Compactness in Hölder Spaces and Minimal Connections on Jet Bundles, math. SG/0808.0415
- H. Gaussier, A. Sukhov, On the geometry of model almost complex manifolds with boundary, Math. Z. 254 (2006), 567-589 Zbl1107.32009MR2244367
- S. Ivashkovich, J.-P. Rosay, Schwarz-type lemmas for solutions of -inequalities and complete hyperbolicity of almost complex manifolds, Annales Inst. Fourier 54 (2004), 2387-2435 Zbl1072.32007MR2139698
- S. Ivashkovich, V. Shevchishin, Gromov Compactness Theorem for -Complex Curves with Boundary, Int. Math. Res. Notices 22 (2000), 1167-1206 Zbl0994.53010MR1807156
- S. Ivashkovich, V. Shevchishin, Reflection Principle and -Complex Curves with Boundary on Totally Real Immersions, Communications in Contemporary Mathematics 4 (2002), 65-106 Zbl1025.32024MR1890078
- L. Lempert, R. Szöke, The tangent bundle of an almost complex manifold, Canad. Math. Bull. 44 (2001), 70-79 Zbl0984.53029MR1816050
- D. McDuff, D. Salamon, -holomorphic curves and symplectic topology, 52 (2004), AMS, Providence, RI Zbl1064.53051MR2045629
- V. Monakhov, Boundary-value problems with free boundary for elliptic systems of equations, 57 (1983), AMS, Providence, RI Zbl0532.35001MR717387
- C. Morrey, Multiple integrals in the calculus of variations, (1966), Springer Verlag Zbl0142.38701MR202511
- H. A. Schwarz, Über einige Abbildungsaufgaben, Journal für reine und angewandte Mathematik 70 (1869), 105-120 (see pages 106–107)
- J.-C. Sikorav, Some properties of holomorphic curves in almost complex manifolds, Holomorphic curves in symplectic geometry 117 (1994), 165-189, M. Audin, J. Lafontaine MR1274929
- H. Triebel, Theory of Function Spaces, (1983), Birkhäuser Zbl0546.46028MR781540
- I. N. Vekua, Generalized analytic functions, (1959), Fizmatgiz, Moscow Zbl0092.29703MR108572
- K. Yano, Sh. Ishihara, Tangent and cotangent bundles, (1973), Marcel Dekker, NY Zbl0262.53024MR350650
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.