Schwarz-type lemmas for solutions of -inequalities and complete hyperbolicity of almost complex manifolds
Sergey Ivashkovich[1]; Jean-Pierre Rosay
- [1] Université Lille I, département de Mathématiques, 59655 Villeneuve d'Ascq Cedex (France), University of Wisconsin, department of Mathematics, Madison WI 53706 (USA)
Annales de l'Institut Fourier (2004)
- Volume: 54, Issue: 7, page 2387-2435
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topIvashkovich, Sergey, and Rosay, Jean-Pierre. "Schwarz-type lemmas for solutions of $\bar{\partial }$-inequalities and complete hyperbolicity of almost complex manifolds." Annales de l'Institut Fourier 54.7 (2004): 2387-2435. <http://eudml.org/doc/116177>.
@article{Ivashkovich2004,
abstract = {The definition of the Kobayashi-Royden pseudo-metric for almost complex manifolds is
similar to its definition for complex manifolds. We study the question of completeness of
some domains for this metric. In particular, we study the completeness of the complement
of submanifolds of co-dimension 1 or 2. The paper includes a discussion, with proofs, of
basic facts in the theory of pseudo-holomorphic discs.},
affiliation = {Université Lille I, département de Mathématiques, 59655 Villeneuve d'Ascq Cedex (France), University of Wisconsin, department of Mathematics, Madison WI 53706 (USA)},
author = {Ivashkovich, Sergey, Rosay, Jean-Pierre},
journal = {Annales de l'Institut Fourier},
keywords = {Kobayashi-Royden pseudo-norm; almost complex manifolds; Schwarz Lemmas; complete hyperbolicity; Schwarz lemmas},
language = {eng},
number = {7},
pages = {2387-2435},
publisher = {Association des Annales de l'Institut Fourier},
title = {Schwarz-type lemmas for solutions of $\bar\{\partial \}$-inequalities and complete hyperbolicity of almost complex manifolds},
url = {http://eudml.org/doc/116177},
volume = {54},
year = {2004},
}
TY - JOUR
AU - Ivashkovich, Sergey
AU - Rosay, Jean-Pierre
TI - Schwarz-type lemmas for solutions of $\bar{\partial }$-inequalities and complete hyperbolicity of almost complex manifolds
JO - Annales de l'Institut Fourier
PY - 2004
PB - Association des Annales de l'Institut Fourier
VL - 54
IS - 7
SP - 2387
EP - 2435
AB - The definition of the Kobayashi-Royden pseudo-metric for almost complex manifolds is
similar to its definition for complex manifolds. We study the question of completeness of
some domains for this metric. In particular, we study the completeness of the complement
of submanifolds of co-dimension 1 or 2. The paper includes a discussion, with proofs, of
basic facts in the theory of pseudo-holomorphic discs.
LA - eng
KW - Kobayashi-Royden pseudo-norm; almost complex manifolds; Schwarz Lemmas; complete hyperbolicity; Schwarz lemmas
UR - http://eudml.org/doc/116177
ER -
References
top- V. Bangert, Existence of a complex line in tame almost complex tori, Duke Math. J 94 (1998), 29-40 Zbl0981.53084MR1635896
- J-F. Barraud, E. Mazzilli, Regular type of real hypersurfaces in (almost) complex manifolds, (2003) Zbl1082.32017
- F. Berteloot, Characterization of models in by their automorphism groups, Int. J. Math 5 (1994), 619-634 Zbl0817.32010MR1297410
- L. Carleson, T. Gamelin, Complex Dynamics, (1993), Springer Verlag Zbl0782.30022MR1230383
- R. Debalme, Kobayashi hyperbolicity of almost complex manifolds, (1998)
- R. Debalme, Variétés hyperboliques presque-complexes, (2001)
- R. Debalme, S. Ivashkovich, Complete hyperbolic neighborhoods in almost complex surfaces, Int. J. Math 12 (2001), 211-221 Zbl1110.32306MR1823575
- D. Donaldson, Symplectic submanifolds and almost-complex geometry, J. Differential Geom 44 (1996), 666-705 Zbl0883.53032MR1438190
- J. Duval, Un théorème de Green presque complexe
- H. Gaussier, A. Sukhov, Estimates of the Kobayashi metric on almost complex manifolds Zbl1083.32011
- M. Gromov, Pseudoholomorphic curves in symplectic manifolds, Invent. Math 82 (1985), 307-347 Zbl0592.53025MR809718
- F. Haggui, Fonctions PSH sur une variété presque complexe, C. R. Acad. Sci. Paris, Sér. I 335 (2002), 509-514 Zbl1013.32019MR1936821
- L. Hörmander, The Analysis of Linear Partial Differential Operators III, 274 (1985), Springer-Verlag, Berlin Heidelberg Zbl0601.35001MR781536
- S. Ivashkovich, S. Pinchuk, J.-P. Rosay, Upper semi-continuity of the Royden-Kobayashi pseudo-norm, a counterexample for Hölderian almost complex structures Zbl1091.32009
- S. Ivashkovich, V. Shevchishin, Structure of the moduli space in a neighborhood of a cusp curve and meromorphic hulls, Invent. Math 136 (1999), 571-602 Zbl0930.32017MR1695206
- S. Ivashkovich, V. Shevchishin, Complex Curves in Almost-Complex Manifolds and Meromorphic Hulls, Publication Series of Graduiertenkollegs "Geometrie und Mathematische Physik" of the Ruhr-University Bochum (1999), 1-186 Zbl0930.32017
- B.S. Kruglikov, Existence of Close Pseudoholomorphic Disks for Almost Complex Manifolds and an Application to the Kobayashi-Royden Pseudonorm, Funct. Anal. and Appl 33 (1999), 38-48 Zbl0967.32024MR1711878
- B.S. Kruglikov, M. Overholt, Pseudoholomorphic mappings and Kobayashi hyperbolicity, Differential Geom. Appl 11 (1999), 265-277 Zbl0954.32019MR1726542
- P. Kiernan, Hyperbolically Imbedded Spaces and Big Picard Theorem, Math. Ann 204 (1973), 203-209 Zbl0244.32010MR372260
- S.G. Mikhlin, Multidimensional Singular Equations and Integral Equations, Pergamon Press (1955) Zbl0067.33702
- D. McDuff, Symplectic manifolds with contact type boundaries, Invent. Math 103 (1991), 651-671 Zbl0719.53015MR1091622
- D. McDuff, D. Salamon, -holomorphic curves and quantum cohomology, Univ. Lect. Series AMS 6 (1994) Zbl0809.53002MR1286255
- A. Nijenhuis, W. Woolf, Some integration problems in almost complex and complex manifolds, Ann. of Math 77 (1963), 424-489 Zbl0115.16103MR149505
- N. Pali, Fonctions plurisousharmoniques et courants positifs de type (1,1) sur une variété presque complexe Zbl1089.32033
- H. Royden, The Extension of Regular Holomorphic Maps, Proc. A.M.S 43 (1974), 306-310 Zbl0292.32019MR335851
- J.-C. Sikorav, Some properties of holomorphic curves in almost complex manifolds, Holomorphic Curves in Symplectic Geometry (1994), 351-361, Birkhauser
- E.M Stein, Singular Integrals and Differentiability Properties of Functions, (1970), Princeton U.P Zbl0207.13501MR290095
- M. Zaidenberg, Picard's theorem and hyperbolicity, Siberian Math. J. 24 (1983), 858-867 Zbl0579.32039MR731042
Citations in EuDML Documents
top- Jean-Pierre Rosay, Uniqueness in Rough Almost Complex Structures, and Differential Inequalities
- William Alexandre, Emmanuel Mazzilli, -holomorphic discs and real analytic hypersurfaces
- Sergey Ivashkovich, Alexandre Sukhov, Schwarz Reflection Principle, Boundary Regularity and Compactness for -Complex Curves
- Jisoo Byun, Hervé Gaussier, Kang-Hyurk Lee, On the automorphism group of strongly pseudoconvex domains in almost complex manifolds
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.