Schwarz-type lemmas for solutions of ¯ -inequalities and complete hyperbolicity of almost complex manifolds

Sergey Ivashkovich[1]; Jean-Pierre Rosay

  • [1] Université Lille I, département de Mathématiques, 59655 Villeneuve d'Ascq Cedex (France), University of Wisconsin, department of Mathematics, Madison WI 53706 (USA)

Annales de l'Institut Fourier (2004)

  • Volume: 54, Issue: 7, page 2387-2435
  • ISSN: 0373-0956

Abstract

top
The definition of the Kobayashi-Royden pseudo-metric for almost complex manifolds is similar to its definition for complex manifolds. We study the question of completeness of some domains for this metric. In particular, we study the completeness of the complement of submanifolds of co-dimension 1 or 2. The paper includes a discussion, with proofs, of basic facts in the theory of pseudo-holomorphic discs.

How to cite

top

Ivashkovich, Sergey, and Rosay, Jean-Pierre. "Schwarz-type lemmas for solutions of $\bar{\partial }$-inequalities and complete hyperbolicity of almost complex manifolds." Annales de l'Institut Fourier 54.7 (2004): 2387-2435. <http://eudml.org/doc/116177>.

@article{Ivashkovich2004,
abstract = {The definition of the Kobayashi-Royden pseudo-metric for almost complex manifolds is similar to its definition for complex manifolds. We study the question of completeness of some domains for this metric. In particular, we study the completeness of the complement of submanifolds of co-dimension 1 or 2. The paper includes a discussion, with proofs, of basic facts in the theory of pseudo-holomorphic discs.},
affiliation = {Université Lille I, département de Mathématiques, 59655 Villeneuve d'Ascq Cedex (France), University of Wisconsin, department of Mathematics, Madison WI 53706 (USA)},
author = {Ivashkovich, Sergey, Rosay, Jean-Pierre},
journal = {Annales de l'Institut Fourier},
keywords = {Kobayashi-Royden pseudo-norm; almost complex manifolds; Schwarz Lemmas; complete hyperbolicity; Schwarz lemmas},
language = {eng},
number = {7},
pages = {2387-2435},
publisher = {Association des Annales de l'Institut Fourier},
title = {Schwarz-type lemmas for solutions of $\bar\{\partial \}$-inequalities and complete hyperbolicity of almost complex manifolds},
url = {http://eudml.org/doc/116177},
volume = {54},
year = {2004},
}

TY - JOUR
AU - Ivashkovich, Sergey
AU - Rosay, Jean-Pierre
TI - Schwarz-type lemmas for solutions of $\bar{\partial }$-inequalities and complete hyperbolicity of almost complex manifolds
JO - Annales de l'Institut Fourier
PY - 2004
PB - Association des Annales de l'Institut Fourier
VL - 54
IS - 7
SP - 2387
EP - 2435
AB - The definition of the Kobayashi-Royden pseudo-metric for almost complex manifolds is similar to its definition for complex manifolds. We study the question of completeness of some domains for this metric. In particular, we study the completeness of the complement of submanifolds of co-dimension 1 or 2. The paper includes a discussion, with proofs, of basic facts in the theory of pseudo-holomorphic discs.
LA - eng
KW - Kobayashi-Royden pseudo-norm; almost complex manifolds; Schwarz Lemmas; complete hyperbolicity; Schwarz lemmas
UR - http://eudml.org/doc/116177
ER -

References

top
  1. V. Bangert, Existence of a complex line in tame almost complex tori, Duke Math. J 94 (1998), 29-40 Zbl0981.53084MR1635896
  2. J-F. Barraud, E. Mazzilli, Regular type of real hypersurfaces in (almost) complex manifolds, (2003) Zbl1082.32017
  3. F. Berteloot, Characterization of models in 2 by their automorphism groups, Int. J. Math 5 (1994), 619-634 Zbl0817.32010MR1297410
  4. L. Carleson, T. Gamelin, Complex Dynamics, (1993), Springer Verlag Zbl0782.30022MR1230383
  5. R. Debalme, Kobayashi hyperbolicity of almost complex manifolds, (1998) 
  6. R. Debalme, Variétés hyperboliques presque-complexes, (2001) 
  7. R. Debalme, S. Ivashkovich, Complete hyperbolic neighborhoods in almost complex surfaces, Int. J. Math 12 (2001), 211-221 Zbl1110.32306MR1823575
  8. D. Donaldson, Symplectic submanifolds and almost-complex geometry, J. Differential Geom 44 (1996), 666-705 Zbl0883.53032MR1438190
  9. J. Duval, Un théorème de Green presque complexe 
  10. H. Gaussier, A. Sukhov, Estimates of the Kobayashi metric on almost complex manifolds Zbl1083.32011
  11. M. Gromov, Pseudoholomorphic curves in symplectic manifolds, Invent. Math 82 (1985), 307-347 Zbl0592.53025MR809718
  12. F. Haggui, Fonctions PSH sur une variété presque complexe, C. R. Acad. Sci. Paris, Sér. I 335 (2002), 509-514 Zbl1013.32019MR1936821
  13. L. Hörmander, The Analysis of Linear Partial Differential Operators III, 274 (1985), Springer-Verlag, Berlin Heidelberg Zbl0601.35001MR781536
  14. S. Ivashkovich, S. Pinchuk, J.-P. Rosay, Upper semi-continuity of the Royden-Kobayashi pseudo-norm, a counterexample for Hölderian almost complex structures Zbl1091.32009
  15. S. Ivashkovich, V. Shevchishin, Structure of the moduli space in a neighborhood of a cusp curve and meromorphic hulls, Invent. Math 136 (1999), 571-602 Zbl0930.32017MR1695206
  16. S. Ivashkovich, V. Shevchishin, Complex Curves in Almost-Complex Manifolds and Meromorphic Hulls, Publication Series of Graduiertenkollegs "Geometrie und Mathematische Physik" of the Ruhr-University Bochum (1999), 1-186 Zbl0930.32017
  17. B.S. Kruglikov, Existence of Close Pseudoholomorphic Disks for Almost Complex Manifolds and an Application to the Kobayashi-Royden Pseudonorm, Funct. Anal. and Appl 33 (1999), 38-48 Zbl0967.32024MR1711878
  18. B.S. Kruglikov, M. Overholt, Pseudoholomorphic mappings and Kobayashi hyperbolicity, Differential Geom. Appl 11 (1999), 265-277 Zbl0954.32019MR1726542
  19. P. Kiernan, Hyperbolically Imbedded Spaces and Big Picard Theorem, Math. Ann 204 (1973), 203-209 Zbl0244.32010MR372260
  20. S.G. Mikhlin, Multidimensional Singular Equations and Integral Equations, Pergamon Press (1955) Zbl0067.33702
  21. D. McDuff, Symplectic manifolds with contact type boundaries, Invent. Math 103 (1991), 651-671 Zbl0719.53015MR1091622
  22. D. McDuff, D. Salamon, J -holomorphic curves and quantum cohomology, Univ. Lect. Series AMS 6 (1994) Zbl0809.53002MR1286255
  23. A. Nijenhuis, W. Woolf, Some integration problems in almost complex and complex manifolds, Ann. of Math 77 (1963), 424-489 Zbl0115.16103MR149505
  24. N. Pali, Fonctions plurisousharmoniques et courants positifs de type (1,1) sur une variété presque complexe Zbl1089.32033
  25. H. Royden, The Extension of Regular Holomorphic Maps, Proc. A.M.S 43 (1974), 306-310 Zbl0292.32019MR335851
  26. J.-C. Sikorav, Some properties of holomorphic curves in almost complex manifolds, Holomorphic Curves in Symplectic Geometry (1994), 351-361, Birkhauser 
  27. E.M Stein, Singular Integrals and Differentiability Properties of Functions, (1970), Princeton U.P Zbl0207.13501MR290095
  28. M. Zaidenberg, Picard's theorem and hyperbolicity, Siberian Math. J. 24 (1983), 858-867 Zbl0579.32039MR731042

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.