-holomorphic discs and real analytic hypersurfaces

William Alexandre[1]; Emmanuel Mazzilli[1]

  • [1] Laboratoire Paul Painlevé U.M.R. CNRS 8524 U.F.R. de Mathématiques cité scientifique Université Lille 1 F59 655 Villeneuve d’Ascq Cedex, France.

Annales de l’institut Fourier (2014)

  • Volume: 64, Issue: 5, page 2223-2250
  • ISSN: 0373-0956

Abstract

top
We give in a real analytic almost complex structure , a real analytic hypersurface and a vector in the Levi null set at of , such that there is no germ of -holomorphic disc included in with and , although the Levi form of has constant rank. Then for any hypersurface and any complex structure , we give sufficient conditions under which there exists such a germ of disc.

How to cite

top

Alexandre, William, and Mazzilli, Emmanuel. "$J$-holomorphic discs and real analytic hypersurfaces." Annales de l’institut Fourier 64.5 (2014): 2223-2250. <http://eudml.org/doc/275494>.

@article{Alexandre2014,
abstract = {We give in $\mathbb\{R\}^6$ a real analytic almost complex structure $J$, a real analytic hypersurface $M$ and a vector $v$ in the Levi null set at $0$ of $M$, such that there is no germ of $J$-holomorphic disc $\gamma $ included in $M$ with $\gamma (0)=0$ and $\frac\{\partial \gamma \}\{\partial x\}(0)=v$, although the Levi form of $M$ has constant rank. Then for any hypersurface $M$ and any complex structure $J$, we give sufficient conditions under which there exists such a germ of disc.},
affiliation = {Laboratoire Paul Painlevé U.M.R. CNRS 8524 U.F.R. de Mathématiques cité scientifique Université Lille 1 F59 655 Villeneuve d’Ascq Cedex, France.; Laboratoire Paul Painlevé U.M.R. CNRS 8524 U.F.R. de Mathématiques cité scientifique Université Lille 1 F59 655 Villeneuve d’Ascq Cedex, France.},
author = {Alexandre, William, Mazzilli, Emmanuel},
journal = {Annales de l’institut Fourier},
keywords = {almost complex structure; $J$-holomorphic disc; hypersurface; -holomorphic disc; Levi form},
language = {eng},
number = {5},
pages = {2223-2250},
publisher = {Association des Annales de l’institut Fourier},
title = {$J$-holomorphic discs and real analytic hypersurfaces},
url = {http://eudml.org/doc/275494},
volume = {64},
year = {2014},
}

TY - JOUR
AU - Alexandre, William
AU - Mazzilli, Emmanuel
TI - $J$-holomorphic discs and real analytic hypersurfaces
JO - Annales de l’institut Fourier
PY - 2014
PB - Association des Annales de l’institut Fourier
VL - 64
IS - 5
SP - 2223
EP - 2250
AB - We give in $\mathbb{R}^6$ a real analytic almost complex structure $J$, a real analytic hypersurface $M$ and a vector $v$ in the Levi null set at $0$ of $M$, such that there is no germ of $J$-holomorphic disc $\gamma $ included in $M$ with $\gamma (0)=0$ and $\frac{\partial \gamma }{\partial x}(0)=v$, although the Levi form of $M$ has constant rank. Then for any hypersurface $M$ and any complex structure $J$, we give sufficient conditions under which there exists such a germ of disc.
LA - eng
KW - almost complex structure; $J$-holomorphic disc; hypersurface; -holomorphic disc; Levi form
UR - http://eudml.org/doc/275494
ER -

References

top
  1. J.-F. Barraud, E. Mazzilli, Regular type of real hyper-surface in (almost) complex manifolds, Math. Z. 248 (2004), 757-772 Zbl1082.32017MR2103540
  2. M. Freeman, Local Complex foliation of Real Submanifolds, Math. Ann. 209 (1974), 1-30 Zbl0267.32006MR346185
  3. S. Ivashkovich, J.-P. Rosay, Schwarz-type lemmas for solutions of -inequalities and complete hyperbolicity of almost complex manifolds, Ann. Inst. Fourier (Grenoble) 54 (2004), 2387-2435 Zbl1072.32007MR2139698
  4. S. Ivashkovich, A. Sukhov, Schwarz reflection principle, boundary regularity and compactness for -complex curves, Ann. Inst. Fourier (Grenoble) 60 (2010), 1489-1513 Zbl1208.32026MR2722249
  5. N. Kruzhilin, A. Sukhov, Pseudoholomorphic discs attached to CR-submanifolds of almost complex spaces, Bull. Sci. Math. 129 (2005), 398-414 Zbl1073.32021MR2146158
  6. L. H. Loomis, An introduction to abstract harmonic analysis, (1953), D. Van Nostrand Company, Inc., Toronto-New York-London Zbl0052.11701MR54173
  7. T. Nagano, Linear differential systems with singularities and an application to transitive Lie algebras, J. Math. Soc. Japan 18 (1966), 398-404 Zbl0147.23502MR199865
  8. J.-C. Sikorav, Some properties of holomorphic curves in almost complex manifolds, Holomorphic curves in symplectic geometry 117 (1994), 165-189, Birkhauser, Basel MR1274929

NotesEmbed ?

top

You must be logged in to post comments.