Effective local finite generation of multiplier ideal sheaves

Dan Popovici[1]

  • [1] Université Paul Sabatier Institut de mathématiques de Toulouse 118 Route de Narbonne 31062 Toulouse Cedex 4 (France)

Annales de l’institut Fourier (2010)

  • Volume: 60, Issue: 5, page 1561-1594
  • ISSN: 0373-0956

Abstract

top
Let ϕ be a psh function on a bounded pseudoconvex open set Ω n , and let ( m ϕ ) be the associated multiplier ideal sheaves, m . Motivated by global geometric issues, we establish an effective version of the coherence property of ( m ϕ ) as m + . Namely, given any B Ω , we estimate the asymptotic growth rate in m of the number of generators of ( m ϕ ) | B over 𝒪 Ω , as well as the growth of the coefficients of sections in Γ ( B , ( m ϕ ) ) with respect to finitely many generators globally defined on Ω . Our approach relies on proving asymptotic integral estimates for Bergman kernels associated with singular weights. These estimates extend to the singular case previous estimates obtained by Lindholm and Berndtsson for Bergman kernels with smooth weights and are of independent interest. In the final section, we estimate asymptotically the additivity defect of multiplier ideal sheaves. As m + , the decay rate of ( m ϕ ) is proved to be almost linear if the singularities of ϕ are analytic.

How to cite

top

Popovici, Dan. "Effective local finite generation of multiplier ideal sheaves." Annales de l’institut Fourier 60.5 (2010): 1561-1594. <http://eudml.org/doc/116314>.

@article{Popovici2010,
abstract = {Let $\varphi $ be a psh function on a bounded pseudoconvex open set $\Omega \subset \mathbb\{C\}^n$, and let $\{\mathcal\{I\}\}(m\varphi )$ be the associated multiplier ideal sheaves, $m\in \mathbb\{N\}^\{\star \}$. Motivated by global geometric issues, we establish an effective version of the coherence property of $\{\mathcal\{I\}\}(m\varphi )$ as $m\rightarrow +\infty $. Namely, given any $B\Subset \Omega $, we estimate the asymptotic growth rate in $m$ of the number of generators of $\{\mathcal\{I\}\}(m\varphi )_\{|B\}$ over $\{\mathcal\{O\}\}_\{\Omega \}$, as well as the growth of the coefficients of sections in $\Gamma (B, \, \{\mathcal\{I\}\}(m\varphi ))$ with respect to finitely many generators globally defined on $\Omega $. Our approach relies on proving asymptotic integral estimates for Bergman kernels associated with singular weights. These estimates extend to the singular case previous estimates obtained by Lindholm and Berndtsson for Bergman kernels with smooth weights and are of independent interest. In the final section, we estimate asymptotically the additivity defect of multiplier ideal sheaves. As $m\rightarrow +\infty $, the decay rate of $\{\mathcal\{I\}\}(m\varphi )$ is proved to be almost linear if the singularities of $\varphi $ are analytic.},
affiliation = {Université Paul Sabatier Institut de mathématiques de Toulouse 118 Route de Narbonne 31062 Toulouse Cedex 4 (France)},
author = {Popovici, Dan},
journal = {Annales de l’institut Fourier},
keywords = {Bergman kernel; closed positive current; $L^2$ estimates; multiplier ideal sheaf; psh function; singular Hermitian metric; Stein manifold; estimates},
language = {eng},
number = {5},
pages = {1561-1594},
publisher = {Association des Annales de l’institut Fourier},
title = {Effective local finite generation of multiplier ideal sheaves},
url = {http://eudml.org/doc/116314},
volume = {60},
year = {2010},
}

TY - JOUR
AU - Popovici, Dan
TI - Effective local finite generation of multiplier ideal sheaves
JO - Annales de l’institut Fourier
PY - 2010
PB - Association des Annales de l’institut Fourier
VL - 60
IS - 5
SP - 1561
EP - 1594
AB - Let $\varphi $ be a psh function on a bounded pseudoconvex open set $\Omega \subset \mathbb{C}^n$, and let ${\mathcal{I}}(m\varphi )$ be the associated multiplier ideal sheaves, $m\in \mathbb{N}^{\star }$. Motivated by global geometric issues, we establish an effective version of the coherence property of ${\mathcal{I}}(m\varphi )$ as $m\rightarrow +\infty $. Namely, given any $B\Subset \Omega $, we estimate the asymptotic growth rate in $m$ of the number of generators of ${\mathcal{I}}(m\varphi )_{|B}$ over ${\mathcal{O}}_{\Omega }$, as well as the growth of the coefficients of sections in $\Gamma (B, \, {\mathcal{I}}(m\varphi ))$ with respect to finitely many generators globally defined on $\Omega $. Our approach relies on proving asymptotic integral estimates for Bergman kernels associated with singular weights. These estimates extend to the singular case previous estimates obtained by Lindholm and Berndtsson for Bergman kernels with smooth weights and are of independent interest. In the final section, we estimate asymptotically the additivity defect of multiplier ideal sheaves. As $m\rightarrow +\infty $, the decay rate of ${\mathcal{I}}(m\varphi )$ is proved to be almost linear if the singularities of $\varphi $ are analytic.
LA - eng
KW - Bergman kernel; closed positive current; $L^2$ estimates; multiplier ideal sheaf; psh function; singular Hermitian metric; Stein manifold; estimates
UR - http://eudml.org/doc/116314
ER -

References

top
  1. R. Berman, Bergman kernels and local holomorphic Morse inequalities, Math. Z. 248 (2004), 325-344 Zbl1066.32002MR2088931
  2. B. Berndtsson, Bergman Kernels Related to Hermitian Line Bundles Over Compact Complex Manifolds, 332 (2003), Amer. Math. Soc., Providence, RI Zbl1038.32003MR2016088
  3. S. Boucksom, On the Volume of a Line Bundle, Internat. J. of Math. 13 (2002), 1043-1063 Zbl1101.14008MR1945706
  4. J.-P. Demailly, Complex Analytic and Algebraic Geometry, http://www-fourier.ujf-grenoble.fr/ demailly/books.html 
  5. J.-P. Demailly, Champs magnétiques et inégalités de Morse pour la d -cohomologie, Ann. Inst. Fourier (Grenoble) 35 (1985), 189-229 Zbl0565.58017MR812325
  6. J.-P. Demailly, Regularization of Closed Positive Currents and Intersection Theory, J. Alg. Geom. 1 (1992), 361-409 Zbl0777.32016MR1158622
  7. J.-P. Demailly, A Numerical Criterion for Very Ample Line Bundles, J. Diff. Geom. 37 (1993), 323-374 Zbl0783.32013MR1205448
  8. J.-P. Demailly, L. Ein, R. Lazarsfeld, A Subadditivity Property of Multiplier Ideals, Michigan Math. J. 48 (2000), 137-156 Zbl1077.14516MR1786484
  9. Ch. Favre, M. Jonsson, Valuative Analysis of Planar Plurisubharmonic Functions, Invent. Math. 162 (2005), 271-311 Zbl1089.32032MR2199007
  10. L. Hörmander, L 2 Estimates and Existence Theorems for the ¯ Operator, Acta Math. 113 (1965), 89-152 Zbl0158.11002MR179443
  11. C. O. Kiselman, Sur la définition de l’opérateur de Monge-Ampère, Lecture Notes in Math. 1094 (1984), 139-150, Springer Verlag Zbl0562.35021MR773106
  12. H. J. Landau, Necessary Density Conditions for Sampling and Interpolation of Certain Entire Functions, Acta Math. 117 (1967), 37-52 Zbl0154.15301MR222554
  13. N. Lindholm, Sampling in Weighted L p Spaces of Entire Functions in n and Estimates of the Bergman Kernel, J. Funct. Anal. 18 (2001), 390-426 Zbl1013.32008MR1828799
  14. A. M. Nadel, Multiplier Ideal Sheaves and Existence of Kälher-Einstein Metrics of Positive Scalar Curvature, Ann. of Math. 132 (1990), 549-596 Zbl0731.53063MR1078269
  15. D. Popovici, Regularisation of Currents with Mass Control and Singular Morse Inequalities, J. Diff. Geom. 80 (2008), 281-326 Zbl1151.58002MR2454895
  16. Y. T. Siu, Extension of Meromorphic Maps into Kähler Manifolds, Ann. of Math. (2) 102 (1975), 421-462 Zbl0318.32007MR463498
  17. Y. T. Siu, Extension of Twisted Pluricanonical Sections with Plurisubharmonic Weight and Invariance of Semipositively Twisted Plurigenera for Manifolds Not Necessarily of General Type, Complex geometry (Göttingen, 2000) (2002), 223-277, Springer Berlin Zbl1007.32010MR1922108
  18. H. Skoda, Applications des techniques L 2 à la théorie des idéaux d’une algèbre de fonctions holomorphes avec poids, Ann. Sci. École Norm. Sup. (4) 5 (1972), 545-579 Zbl0254.32017MR333246
  19. G. Tian, On a Set of Polarized Kähler Metrics on Algebraic Manifolds, J. Differential Geom. 32 (1990), 99-130 Zbl0706.53036MR1064867
  20. S. T. Yau, Open Problems in Geometry, Proc. Symp. Pure Math. 54 (1993), 1-28, AMS Providence, RI Zbl0801.53001MR1216573
  21. S. Zelditch, Szegö Kernels and a Theorem of Tian, Internat. Math. Res. Notices 1998 6 (1998), 317-331 Zbl0922.58082MR1616718

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.