Effective local finite generation of multiplier ideal sheaves
Dan Popovici[1]
- [1] Université Paul Sabatier Institut de mathématiques de Toulouse 118 Route de Narbonne 31062 Toulouse Cedex 4 (France)
Annales de l’institut Fourier (2010)
- Volume: 60, Issue: 5, page 1561-1594
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topReferences
top- R. Berman, Bergman kernels and local holomorphic Morse inequalities, Math. Z. 248 (2004), 325-344 Zbl1066.32002MR2088931
- B. Berndtsson, Bergman Kernels Related to Hermitian Line Bundles Over Compact Complex Manifolds, 332 (2003), Amer. Math. Soc., Providence, RI Zbl1038.32003MR2016088
- S. Boucksom, On the Volume of a Line Bundle, Internat. J. of Math. 13 (2002), 1043-1063 Zbl1101.14008MR1945706
- J.-P. Demailly, Complex Analytic and Algebraic Geometry, http://www-fourier.ujf-grenoble.fr/ demailly/books.html
- J.-P. Demailly, Champs magnétiques et inégalités de Morse pour la -cohomologie, Ann. Inst. Fourier (Grenoble) 35 (1985), 189-229 Zbl0565.58017MR812325
- J.-P. Demailly, Regularization of Closed Positive Currents and Intersection Theory, J. Alg. Geom. 1 (1992), 361-409 Zbl0777.32016MR1158622
- J.-P. Demailly, A Numerical Criterion for Very Ample Line Bundles, J. Diff. Geom. 37 (1993), 323-374 Zbl0783.32013MR1205448
- J.-P. Demailly, L. Ein, R. Lazarsfeld, A Subadditivity Property of Multiplier Ideals, Michigan Math. J. 48 (2000), 137-156 Zbl1077.14516MR1786484
- Ch. Favre, M. Jonsson, Valuative Analysis of Planar Plurisubharmonic Functions, Invent. Math. 162 (2005), 271-311 Zbl1089.32032MR2199007
- L. Hörmander, Estimates and Existence Theorems for the Operator, Acta Math. 113 (1965), 89-152 Zbl0158.11002MR179443
- C. O. Kiselman, Sur la définition de l’opérateur de Monge-Ampère, Lecture Notes in Math. 1094 (1984), 139-150, Springer Verlag Zbl0562.35021MR773106
- H. J. Landau, Necessary Density Conditions for Sampling and Interpolation of Certain Entire Functions, Acta Math. 117 (1967), 37-52 Zbl0154.15301MR222554
- N. Lindholm, Sampling in Weighted Spaces of Entire Functions in and Estimates of the Bergman Kernel, J. Funct. Anal. 18 (2001), 390-426 Zbl1013.32008MR1828799
- A. M. Nadel, Multiplier Ideal Sheaves and Existence of Kälher-Einstein Metrics of Positive Scalar Curvature, Ann. of Math. 132 (1990), 549-596 Zbl0731.53063MR1078269
- D. Popovici, Regularisation of Currents with Mass Control and Singular Morse Inequalities, J. Diff. Geom. 80 (2008), 281-326 Zbl1151.58002MR2454895
- Y. T. Siu, Extension of Meromorphic Maps into Kähler Manifolds, Ann. of Math. (2) 102 (1975), 421-462 Zbl0318.32007MR463498
- Y. T. Siu, Extension of Twisted Pluricanonical Sections with Plurisubharmonic Weight and Invariance of Semipositively Twisted Plurigenera for Manifolds Not Necessarily of General Type, Complex geometry (Göttingen, 2000) (2002), 223-277, Springer Berlin Zbl1007.32010MR1922108
- H. Skoda, Applications des techniques à la théorie des idéaux d’une algèbre de fonctions holomorphes avec poids, Ann. Sci. École Norm. Sup. (4) 5 (1972), 545-579 Zbl0254.32017MR333246
- G. Tian, On a Set of Polarized Kähler Metrics on Algebraic Manifolds, J. Differential Geom. 32 (1990), 99-130 Zbl0706.53036MR1064867
- S. T. Yau, Open Problems in Geometry, Proc. Symp. Pure Math. 54 (1993), 1-28, AMS Providence, RI Zbl0801.53001MR1216573
- S. Zelditch, Szegö Kernels and a Theorem of Tian, Internat. Math. Res. Notices 1998 6 (1998), 317-331 Zbl0922.58082MR1616718