Effective local finite generation of multiplier ideal sheaves
Dan Popovici[1]
- [1] Université Paul Sabatier Institut de mathématiques de Toulouse 118 Route de Narbonne 31062 Toulouse Cedex 4 (France)
Annales de l’institut Fourier (2010)
- Volume: 60, Issue: 5, page 1561-1594
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topPopovici, Dan. "Effective local finite generation of multiplier ideal sheaves." Annales de l’institut Fourier 60.5 (2010): 1561-1594. <http://eudml.org/doc/116314>.
@article{Popovici2010,
abstract = {Let $\varphi $ be a psh function on a bounded pseudoconvex open set $\Omega \subset \mathbb\{C\}^n$, and let $\{\mathcal\{I\}\}(m\varphi )$ be the associated multiplier ideal sheaves, $m\in \mathbb\{N\}^\{\star \}$. Motivated by global geometric issues, we establish an effective version of the coherence property of $\{\mathcal\{I\}\}(m\varphi )$ as $m\rightarrow +\infty $. Namely, given any $B\Subset \Omega $, we estimate the asymptotic growth rate in $m$ of the number of generators of $\{\mathcal\{I\}\}(m\varphi )_\{|B\}$ over $\{\mathcal\{O\}\}_\{\Omega \}$, as well as the growth of the coefficients of sections in $\Gamma (B, \, \{\mathcal\{I\}\}(m\varphi ))$ with respect to finitely many generators globally defined on $\Omega $. Our approach relies on proving asymptotic integral estimates for Bergman kernels associated with singular weights. These estimates extend to the singular case previous estimates obtained by Lindholm and Berndtsson for Bergman kernels with smooth weights and are of independent interest. In the final section, we estimate asymptotically the additivity defect of multiplier ideal sheaves. As $m\rightarrow +\infty $, the decay rate of $\{\mathcal\{I\}\}(m\varphi )$ is proved to be almost linear if the singularities of $\varphi $ are analytic.},
affiliation = {Université Paul Sabatier Institut de mathématiques de Toulouse 118 Route de Narbonne 31062 Toulouse Cedex 4 (France)},
author = {Popovici, Dan},
journal = {Annales de l’institut Fourier},
keywords = {Bergman kernel; closed positive current; $L^2$ estimates; multiplier ideal sheaf; psh function; singular Hermitian metric; Stein manifold; estimates},
language = {eng},
number = {5},
pages = {1561-1594},
publisher = {Association des Annales de l’institut Fourier},
title = {Effective local finite generation of multiplier ideal sheaves},
url = {http://eudml.org/doc/116314},
volume = {60},
year = {2010},
}
TY - JOUR
AU - Popovici, Dan
TI - Effective local finite generation of multiplier ideal sheaves
JO - Annales de l’institut Fourier
PY - 2010
PB - Association des Annales de l’institut Fourier
VL - 60
IS - 5
SP - 1561
EP - 1594
AB - Let $\varphi $ be a psh function on a bounded pseudoconvex open set $\Omega \subset \mathbb{C}^n$, and let ${\mathcal{I}}(m\varphi )$ be the associated multiplier ideal sheaves, $m\in \mathbb{N}^{\star }$. Motivated by global geometric issues, we establish an effective version of the coherence property of ${\mathcal{I}}(m\varphi )$ as $m\rightarrow +\infty $. Namely, given any $B\Subset \Omega $, we estimate the asymptotic growth rate in $m$ of the number of generators of ${\mathcal{I}}(m\varphi )_{|B}$ over ${\mathcal{O}}_{\Omega }$, as well as the growth of the coefficients of sections in $\Gamma (B, \, {\mathcal{I}}(m\varphi ))$ with respect to finitely many generators globally defined on $\Omega $. Our approach relies on proving asymptotic integral estimates for Bergman kernels associated with singular weights. These estimates extend to the singular case previous estimates obtained by Lindholm and Berndtsson for Bergman kernels with smooth weights and are of independent interest. In the final section, we estimate asymptotically the additivity defect of multiplier ideal sheaves. As $m\rightarrow +\infty $, the decay rate of ${\mathcal{I}}(m\varphi )$ is proved to be almost linear if the singularities of $\varphi $ are analytic.
LA - eng
KW - Bergman kernel; closed positive current; $L^2$ estimates; multiplier ideal sheaf; psh function; singular Hermitian metric; Stein manifold; estimates
UR - http://eudml.org/doc/116314
ER -
References
top- R. Berman, Bergman kernels and local holomorphic Morse inequalities, Math. Z. 248 (2004), 325-344 Zbl1066.32002MR2088931
- B. Berndtsson, Bergman Kernels Related to Hermitian Line Bundles Over Compact Complex Manifolds, 332 (2003), Amer. Math. Soc., Providence, RI Zbl1038.32003MR2016088
- S. Boucksom, On the Volume of a Line Bundle, Internat. J. of Math. 13 (2002), 1043-1063 Zbl1101.14008MR1945706
- J.-P. Demailly, Complex Analytic and Algebraic Geometry, http://www-fourier.ujf-grenoble.fr/ demailly/books.html
- J.-P. Demailly, Champs magnétiques et inégalités de Morse pour la -cohomologie, Ann. Inst. Fourier (Grenoble) 35 (1985), 189-229 Zbl0565.58017MR812325
- J.-P. Demailly, Regularization of Closed Positive Currents and Intersection Theory, J. Alg. Geom. 1 (1992), 361-409 Zbl0777.32016MR1158622
- J.-P. Demailly, A Numerical Criterion for Very Ample Line Bundles, J. Diff. Geom. 37 (1993), 323-374 Zbl0783.32013MR1205448
- J.-P. Demailly, L. Ein, R. Lazarsfeld, A Subadditivity Property of Multiplier Ideals, Michigan Math. J. 48 (2000), 137-156 Zbl1077.14516MR1786484
- Ch. Favre, M. Jonsson, Valuative Analysis of Planar Plurisubharmonic Functions, Invent. Math. 162 (2005), 271-311 Zbl1089.32032MR2199007
- L. Hörmander, Estimates and Existence Theorems for the Operator, Acta Math. 113 (1965), 89-152 Zbl0158.11002MR179443
- C. O. Kiselman, Sur la définition de l’opérateur de Monge-Ampère, Lecture Notes in Math. 1094 (1984), 139-150, Springer Verlag Zbl0562.35021MR773106
- H. J. Landau, Necessary Density Conditions for Sampling and Interpolation of Certain Entire Functions, Acta Math. 117 (1967), 37-52 Zbl0154.15301MR222554
- N. Lindholm, Sampling in Weighted Spaces of Entire Functions in and Estimates of the Bergman Kernel, J. Funct. Anal. 18 (2001), 390-426 Zbl1013.32008MR1828799
- A. M. Nadel, Multiplier Ideal Sheaves and Existence of Kälher-Einstein Metrics of Positive Scalar Curvature, Ann. of Math. 132 (1990), 549-596 Zbl0731.53063MR1078269
- D. Popovici, Regularisation of Currents with Mass Control and Singular Morse Inequalities, J. Diff. Geom. 80 (2008), 281-326 Zbl1151.58002MR2454895
- Y. T. Siu, Extension of Meromorphic Maps into Kähler Manifolds, Ann. of Math. (2) 102 (1975), 421-462 Zbl0318.32007MR463498
- Y. T. Siu, Extension of Twisted Pluricanonical Sections with Plurisubharmonic Weight and Invariance of Semipositively Twisted Plurigenera for Manifolds Not Necessarily of General Type, Complex geometry (Göttingen, 2000) (2002), 223-277, Springer Berlin Zbl1007.32010MR1922108
- H. Skoda, Applications des techniques à la théorie des idéaux d’une algèbre de fonctions holomorphes avec poids, Ann. Sci. École Norm. Sup. (4) 5 (1972), 545-579 Zbl0254.32017MR333246
- G. Tian, On a Set of Polarized Kähler Metrics on Algebraic Manifolds, J. Differential Geom. 32 (1990), 99-130 Zbl0706.53036MR1064867
- S. T. Yau, Open Problems in Geometry, Proc. Symp. Pure Math. 54 (1993), 1-28, AMS Providence, RI Zbl0801.53001MR1216573
- S. Zelditch, Szegö Kernels and a Theorem of Tian, Internat. Math. Res. Notices 1998 6 (1998), 317-331 Zbl0922.58082MR1616718
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.