On simultaneous rational approximation to a real number and its integral powers
Yann Bugeaud[1]
- [1] Université de Strasbourg Mathématiques 7, rue René Descartes 67084 Strasbourg (FRANCE)
Annales de l’institut Fourier (2010)
- Volume: 60, Issue: 6, page 2165-2182
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topBugeaud, Yann. "On simultaneous rational approximation to a real number and its integral powers." Annales de l’institut Fourier 60.6 (2010): 2165-2182. <http://eudml.org/doc/116329>.
@article{Bugeaud2010,
abstract = {For a positive integer $n$ and a real number $\xi $, let $\lambda _n (\xi )$ denote the supremum of the real numbers $\lambda $ such that there are arbitrarily large positive integers $q$ such that $|| q \xi ||, || q \xi ^2 ||, \ldots , ||q \xi ^n||$ are all less than $q^\{-\lambda \}$. Here, $|| \cdot ||$ denotes the distance to the nearest integer. We study the set of values taken by the function $\lambda _n$ and, more generally, we are concerned with the joint spectrum of $(\lambda _1, \ldots , \lambda _n , \ldots )$. We further address several open problems.},
affiliation = {Université de Strasbourg Mathématiques 7, rue René Descartes 67084 Strasbourg (FRANCE)},
author = {Bugeaud, Yann},
journal = {Annales de l’institut Fourier},
keywords = {Simultaneous approximation; exponent of approximation; simultaneous approximation},
language = {eng},
number = {6},
pages = {2165-2182},
publisher = {Association des Annales de l’institut Fourier},
title = {On simultaneous rational approximation to a real number and its integral powers},
url = {http://eudml.org/doc/116329},
volume = {60},
year = {2010},
}
TY - JOUR
AU - Bugeaud, Yann
TI - On simultaneous rational approximation to a real number and its integral powers
JO - Annales de l’institut Fourier
PY - 2010
PB - Association des Annales de l’institut Fourier
VL - 60
IS - 6
SP - 2165
EP - 2182
AB - For a positive integer $n$ and a real number $\xi $, let $\lambda _n (\xi )$ denote the supremum of the real numbers $\lambda $ such that there are arbitrarily large positive integers $q$ such that $|| q \xi ||, || q \xi ^2 ||, \ldots , ||q \xi ^n||$ are all less than $q^{-\lambda }$. Here, $|| \cdot ||$ denotes the distance to the nearest integer. We study the set of values taken by the function $\lambda _n$ and, more generally, we are concerned with the joint spectrum of $(\lambda _1, \ldots , \lambda _n , \ldots )$. We further address several open problems.
LA - eng
KW - Simultaneous approximation; exponent of approximation; simultaneous approximation
UR - http://eudml.org/doc/116329
ER -
References
top- B. Adamczewski, Y. Bugeaud, Palindromic continued fractions, Ann. Inst. Fourier (Grenoble) 57 (2007), 1557-1574 Zbl1126.11036MR2364142
- V. Beresnevich, Rational points near manifolds and metric Diophantine approximation Zbl1264.11063
- V. Beresnevich, D. Dickinson, S. L. Velani, Diophantine approximation on planer curves and the distribution of rational points, Ann. of Math. 166 (2007), 367-426 Zbl1137.11048MR2373145
- V. I. Bernik, Application of the Hausdorff dimension in the theory of Diophantine approximations, Acta Arith. 42 (1983), 219-253 Zbl0482.10049MR729734
- N. Budarina, D. Dickinson, J. Levesley, Simultaneous Diophantine approximation on polynomial curves, Mathematika 56 (2010), 77-85 Zbl1279.11076MR2604984
- Y. Bugeaud, Approximation by algebraic numbers, (2004), Cambridge University Press Zbl1055.11002MR2136100
- Y. Bugeaud, Diophantine approximation and Cantor sets, Math. Ann. 341 (2008), 677-684 Zbl1163.11056MR2399165
- Y. Bugeaud, Multiplicative Diophantine approximation, Dynamical systems and Diophantine Approximation (to appear) Zbl1266.11083
- Y. Bugeaud, M. Laurent, On transfer inequalities in Diophantine approximation, II Zbl1234.11086
- Y. Bugeaud, M. Laurent, Exponents of Diophantine Approximation and Sturmian Continued Fractions, Ann. Inst. Fourier (Grenoble) 55 (2005), 773-804 Zbl1155.11333MR2149403
- Y. Bugeaud, M. Laurent, Exponents of Diophantine approximation, Diophantine Geometry Proceedings 4 (2007), 101-121, Scuola Normale Superiore Pisa, Ser. CRM Zbl1229.11098MR2349650
- R. Güting, Zur Berechnung der Mahlerschen Funktionen , J. reine angew. Math. 232 (1968), 122-135 Zbl0174.08503MR233776
- V. Jarník, Über die simultanen Diophantische Approximationen, Math. Z. 33 (1931), 505-543 Zbl57.1370.01MR1545226
- V. Jarník, Über einen Satz von A. Khintchine II, Acta Arith. 2 (1936), 1-22 Zbl0015.29405
- D. Kleinbock, E. Lindenstrauss, B. Weiss, On fractal measures and Diophantine approximation, Selecta Math. 10 (2004), 479-523 Zbl1130.11039MR2134453
- S. Lang, Algebra, 211 (2002), Springer-Verlag, New York Zbl0984.00001MR1878556
- M. Laurent, On transfer inequalities in Diophantine Approximation, Analytic Number Theory in Honour of Klaus Roth (2009), 306-314, Cambridge University Press Zbl1163.11053MR2508652
- K. Mahler, Zur Approximation der Exponentialfunktionen und des Logarithmus. I, II, J. reine angew. Math. 166 (1932), 118-150 Zbl0003.38805
- W. M. Schmidt, On heights of algebraic subspaces and diophantine approximations, Annals of Math. 85 (1967), 430-472 Zbl0152.03602MR213301
- V. G. Sprindžuk, Mahler’s problem in metric number theory, (1967), Nauka i Tehnika, Minsk Zbl0168.29504
- R. C. Vaughan, S. Velani, Diophantine approximation on planar curves: the convergence theory, Invent. Math. 166 (2006), 103-124 Zbl1185.11047MR2242634
- E. Wirsing, Approximation mit algebraischen Zahlen beschränkten Grades, J. reine angew. Math. 206 (1961), 67-77 Zbl0097.03503MR142510
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.