Palindromic continued fractions
Boris Adamczewski[1]; Yann Bugeaud[2]
- [1] CNRS and Université Claude Bernard Lyon 1 Institut Camille Jordan Bât. Braconnier, 21 avenue Claude Bernard 69622 Villeurbanne Cedex (FRANCE)
- [2] Université Louis Pasteur U. F. R. de mathématiques 7, rue René Descartes 67084 Strasbourg Cedex (FRANCE)
Annales de l’institut Fourier (2007)
- Volume: 57, Issue: 5, page 1557-1574
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topAdamczewski, Boris, and Bugeaud, Yann. "Palindromic continued fractions." Annales de l’institut Fourier 57.5 (2007): 1557-1574. <http://eudml.org/doc/10270>.
@article{Adamczewski2007,
abstract = {In the present work, we investigate real numbers whose sequence of partial quotients enjoys some combinatorial properties involving the notion of palindrome. We provide three new transendence criteria, that apply to a broad class of continued fraction expansions, including expansions with unbounded partial quotients. Their proofs heavily depend on the Schmidt Subspace Theorem.},
affiliation = {CNRS and Université Claude Bernard Lyon 1 Institut Camille Jordan Bât. Braconnier, 21 avenue Claude Bernard 69622 Villeurbanne Cedex (FRANCE); Université Louis Pasteur U. F. R. de mathématiques 7, rue René Descartes 67084 Strasbourg Cedex (FRANCE)},
author = {Adamczewski, Boris, Bugeaud, Yann},
journal = {Annales de l’institut Fourier},
keywords = {Continued fractions; palindromes; transcendental numbers; Subspace Theorem; continued fractions; subspace theorem},
language = {eng},
number = {5},
pages = {1557-1574},
publisher = {Association des Annales de l’institut Fourier},
title = {Palindromic continued fractions},
url = {http://eudml.org/doc/10270},
volume = {57},
year = {2007},
}
TY - JOUR
AU - Adamczewski, Boris
AU - Bugeaud, Yann
TI - Palindromic continued fractions
JO - Annales de l’institut Fourier
PY - 2007
PB - Association des Annales de l’institut Fourier
VL - 57
IS - 5
SP - 1557
EP - 1574
AB - In the present work, we investigate real numbers whose sequence of partial quotients enjoys some combinatorial properties involving the notion of palindrome. We provide three new transendence criteria, that apply to a broad class of continued fraction expansions, including expansions with unbounded partial quotients. Their proofs heavily depend on the Schmidt Subspace Theorem.
LA - eng
KW - Continued fractions; palindromes; transcendental numbers; Subspace Theorem; continued fractions; subspace theorem
UR - http://eudml.org/doc/10270
ER -
References
top- B. Adamczewski, Y. Bugeaud, A Short Proof of the Transcendence of Thue-Morse Continued Fractions, Amer. Math. Monthly Zbl1132.11330MR2321257
- B. Adamczewski, Y. Bugeaud, On the Maillet-Baker continued fractions, J. Reine Angew. Math. Zbl1145.11054
- B. Adamczewski, Y. Bugeaud, On the complexity of algebraic numbers, II. Continued fractions, Acta Math. 195 (2005), 1-20 Zbl1195.11093MR2233683
- B. Adamczewski, Y. Bugeaud, On the Littlewood conjecture in simultaneous Diophantine approximation, J. London Math. Soc. 73 (2006), 355-366 Zbl1093.11052MR2225491
- B. Adamczewski, Y. Bugeaud, Real and -adic expansions involving symmetric patterns, Int. Math. Res. Not. (2006) Zbl1113.11041MR2250005
- B. Adamczewski, Y. Bugeaud, L. Davison, Continued fractions and transcendental numbers, Ann. Inst. Fourier Zbl1152.11034
- J.-P. Allouche, J. L. Davison, M. Queffélec, L. Q. Zamboni, Transcendence of Sturmian or morphic continued fractions, J. Number Theory 91 (2001), 39-66 Zbl0998.11036MR1869317
- A. Baker, Continued fractions of transcendental numbers, Mathematika 9 (1962), 1-8 Zbl0105.03903MR144853
- A. Baker, On Mahler’s classification of transcendental numbers, Acta Math. 111 (1964), 97-120 Zbl0147.03403
- Y. Bugeaud, M. Laurent, Exponents of Diophantine and Sturmian continued fractions, Ann. Inst. Fourier 55 (2005), 773-804 Zbl1155.11333MR2149403
- J. L. Davison, A class of transcendental numbers with bounded partial quotients, Number Theory and Applications (1989), 365-371, Kluwer Academic Publishers Zbl0693.10028MR1123082
- S. Fischler, Palindromic Prefixes and Diophantine Approximation, Monatsh. Math. Zbl1124.11032MR2317388
- S. Fischler, Palindromic Prefixes and Episturmian Words, J. Combin. Theory, Ser. A 113 (2006), 1281-1304 Zbl1109.68082MR2259061
- V. Jarník, Über die simultanen Diophantische Approximationen, Math. Z. 33 (1931), 505-543 Zbl57.1370.01MR1545226
- A. Ya. Khintchine, Continued Fractions, (1949), Gosudarstv. Izdat. Tehn.-Theor. Lit., Moscow-Leningrad MR44586
- S. Lang, Introduction to Diophantine Approximations, (1995), Springer-Verlag, New-York Zbl0826.11030MR1348400
- J. Liouville, Sur des classes très étendues de quantités dont la valeur n’est ni algébrique, ni même réductible à des irrationelles algébriques, C. R. Acad. Sci. Paris 19 (1844), 883-885 and 119–995
- E. Maillet, Introduction à la théorie des nombres transcendants et des propriétés arithmétiques des fonctions, (1906), Gauthier-Villars, Paris Zbl37.0237.02
- O. Perron, Die Lehre von den Ketterbrüchen, (1929), Teubner, Leipzig
- M. Queffélec, Transcendance des fractions continues de Thue–Morse, J. Number Theory 73 (1998), 201-211 Zbl0920.11045MR1658023
- D. Roy, Approximation to real numbers by cubic algebraic integers, II, Ann. of Math. (2) 158 (2003), 1081-1087 Zbl1044.11061MR2031862
- D. Roy, Approximation to real numbers by cubic algebraic integers, I, Proc. London Math. Soc. (3) 88 (2004), 42-62 Zbl1035.11028MR2018957
- W. M. Schmidt, On simultaneous approximations of two algebraic numbers by rationals, Acta Math. 119 (1967), 27-50 Zbl0173.04801MR223309
- W. M. Schmidt, Norm form equations, Ann. of Math. 96 (1972), 526-551 Zbl0226.10024MR314761
- W. M. Schmidt, Diophantine approximation, (1980), Springer-Verlag, Berlin Zbl0421.10019
Citations in EuDML Documents
top- Yann Bugeaud, Automatic continued fractions are transcendental or quadratic
- Yann Bugeaud, On simultaneous rational approximation to a real number and its integral powers
- Yann Bugeaud, Quantitative versions of the Subspace Theorem and applications
- Amy Glen, Jacques Justin, Episturmian words: a survey
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.