Palindromic continued fractions

Boris Adamczewski[1]; Yann Bugeaud[2]

  • [1] CNRS and Université Claude Bernard Lyon 1 Institut Camille Jordan Bât. Braconnier, 21 avenue Claude Bernard 69622 Villeurbanne Cedex (FRANCE)
  • [2] Université Louis Pasteur U. F. R. de mathématiques 7, rue René Descartes 67084 Strasbourg Cedex (FRANCE)

Annales de l’institut Fourier (2007)

  • Volume: 57, Issue: 5, page 1557-1574
  • ISSN: 0373-0956

Abstract

top
In the present work, we investigate real numbers whose sequence of partial quotients enjoys some combinatorial properties involving the notion of palindrome. We provide three new transendence criteria, that apply to a broad class of continued fraction expansions, including expansions with unbounded partial quotients. Their proofs heavily depend on the Schmidt Subspace Theorem.

How to cite

top

Adamczewski, Boris, and Bugeaud, Yann. "Palindromic continued fractions." Annales de l’institut Fourier 57.5 (2007): 1557-1574. <http://eudml.org/doc/10270>.

@article{Adamczewski2007,
abstract = {In the present work, we investigate real numbers whose sequence of partial quotients enjoys some combinatorial properties involving the notion of palindrome. We provide three new transendence criteria, that apply to a broad class of continued fraction expansions, including expansions with unbounded partial quotients. Their proofs heavily depend on the Schmidt Subspace Theorem.},
affiliation = {CNRS and Université Claude Bernard Lyon 1 Institut Camille Jordan Bât. Braconnier, 21 avenue Claude Bernard 69622 Villeurbanne Cedex (FRANCE); Université Louis Pasteur U. F. R. de mathématiques 7, rue René Descartes 67084 Strasbourg Cedex (FRANCE)},
author = {Adamczewski, Boris, Bugeaud, Yann},
journal = {Annales de l’institut Fourier},
keywords = {Continued fractions; palindromes; transcendental numbers; Subspace Theorem; continued fractions; subspace theorem},
language = {eng},
number = {5},
pages = {1557-1574},
publisher = {Association des Annales de l’institut Fourier},
title = {Palindromic continued fractions},
url = {http://eudml.org/doc/10270},
volume = {57},
year = {2007},
}

TY - JOUR
AU - Adamczewski, Boris
AU - Bugeaud, Yann
TI - Palindromic continued fractions
JO - Annales de l’institut Fourier
PY - 2007
PB - Association des Annales de l’institut Fourier
VL - 57
IS - 5
SP - 1557
EP - 1574
AB - In the present work, we investigate real numbers whose sequence of partial quotients enjoys some combinatorial properties involving the notion of palindrome. We provide three new transendence criteria, that apply to a broad class of continued fraction expansions, including expansions with unbounded partial quotients. Their proofs heavily depend on the Schmidt Subspace Theorem.
LA - eng
KW - Continued fractions; palindromes; transcendental numbers; Subspace Theorem; continued fractions; subspace theorem
UR - http://eudml.org/doc/10270
ER -

References

top
  1. B. Adamczewski, Y. Bugeaud, A Short Proof of the Transcendence of Thue-Morse Continued Fractions, Amer. Math. Monthly Zbl1132.11330MR2321257
  2. B. Adamczewski, Y. Bugeaud, On the Maillet-Baker continued fractions, J. Reine Angew. Math. Zbl1145.11054
  3. B. Adamczewski, Y. Bugeaud, On the complexity of algebraic numbers, II. Continued fractions, Acta Math. 195 (2005), 1-20 Zbl1195.11093MR2233683
  4. B. Adamczewski, Y. Bugeaud, On the Littlewood conjecture in simultaneous Diophantine approximation, J. London Math. Soc. 73 (2006), 355-366 Zbl1093.11052MR2225491
  5. B. Adamczewski, Y. Bugeaud, Real and p -adic expansions involving symmetric patterns, Int. Math. Res. Not. (2006) Zbl1113.11041MR2250005
  6. B. Adamczewski, Y. Bugeaud, L. Davison, Continued fractions and transcendental numbers, Ann. Inst. Fourier Zbl1152.11034
  7. J.-P. Allouche, J. L. Davison, M. Queffélec, L. Q. Zamboni, Transcendence of Sturmian or morphic continued fractions, J. Number Theory 91 (2001), 39-66 Zbl0998.11036MR1869317
  8. A. Baker, Continued fractions of transcendental numbers, Mathematika 9 (1962), 1-8 Zbl0105.03903MR144853
  9. A. Baker, On Mahler’s classification of transcendental numbers, Acta Math. 111 (1964), 97-120 Zbl0147.03403
  10. Y. Bugeaud, M. Laurent, Exponents of Diophantine and Sturmian continued fractions, Ann. Inst. Fourier 55 (2005), 773-804 Zbl1155.11333MR2149403
  11. J. L. Davison, A class of transcendental numbers with bounded partial quotients, Number Theory and Applications (1989), 365-371, Kluwer Academic Publishers Zbl0693.10028MR1123082
  12. S. Fischler, Palindromic Prefixes and Diophantine Approximation, Monatsh. Math. Zbl1124.11032MR2317388
  13. S. Fischler, Palindromic Prefixes and Episturmian Words, J. Combin. Theory, Ser. A 113 (2006), 1281-1304 Zbl1109.68082MR2259061
  14. V. Jarník, Über die simultanen Diophantische Approximationen, Math. Z. 33 (1931), 505-543 Zbl57.1370.01MR1545226
  15. A. Ya. Khintchine, Continued Fractions, (1949), Gosudarstv. Izdat. Tehn.-Theor. Lit., Moscow-Leningrad MR44586
  16. S. Lang, Introduction to Diophantine Approximations, (1995), Springer-Verlag, New-York Zbl0826.11030MR1348400
  17. J. Liouville, Sur des classes très étendues de quantités dont la valeur n’est ni algébrique, ni même réductible à des irrationelles algébriques, C. R. Acad. Sci. Paris 19 (1844), 883-885 and 119–995 
  18. E. Maillet, Introduction à la théorie des nombres transcendants et des propriétés arithmétiques des fonctions, (1906), Gauthier-Villars, Paris Zbl37.0237.02
  19. O. Perron, Die Lehre von den Ketterbrüchen, (1929), Teubner, Leipzig 
  20. M. Queffélec, Transcendance des fractions continues de Thue–Morse, J. Number Theory 73 (1998), 201-211 Zbl0920.11045MR1658023
  21. D. Roy, Approximation to real numbers by cubic algebraic integers, II, Ann. of Math. (2) 158 (2003), 1081-1087 Zbl1044.11061MR2031862
  22. D. Roy, Approximation to real numbers by cubic algebraic integers, I, Proc. London Math. Soc. (3) 88 (2004), 42-62 Zbl1035.11028MR2018957
  23. W. M. Schmidt, On simultaneous approximations of two algebraic numbers by rationals, Acta Math. 119 (1967), 27-50 Zbl0173.04801MR223309
  24. W. M. Schmidt, Norm form equations, Ann. of Math. 96 (1972), 526-551 Zbl0226.10024MR314761
  25. W. M. Schmidt, Diophantine approximation, (1980), Springer-Verlag, Berlin Zbl0421.10019

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.