Exponents of Diophantine Approximation and Sturmian Continued Fractions

• [1] Université Louis Pasteur, U. F. R. de mathématiques, 7 rue René Descartes, 67084 STRASBOURG (France), Institut de Mathématiques de Luminy, U.P.R. 9016, case 907, 163 avenue de Luminy, 13288 MARSEILLE CEDEX 9 (France)
• Volume: 55, Issue: 3, page 773-804
• ISSN: 0373-0956

top

Abstract

top
Let $\xi$ be a real number and let $n$ be a positive integer. We define four exponents of Diophantine approximation, which complement the exponents ${w}_{n}\left(\xi \right)$ and ${w}_{n}^{*}\left(\xi \right)$ defined by Mahler and Koksma. We calculate their six values when $n=2$ and $\xi$ is a real number whose continued fraction expansion coincides with some Sturmian sequence of positive integers, up to the initial terms. In particular, we obtain the exact exponent of approximation to such a continued fraction $\xi$ by quadratic surds.

How to cite

top

Bugeaud, Yann, and Laurent, Michel. "Exponents of Diophantine Approximation and Sturmian Continued Fractions." Annales de l’institut Fourier 55.3 (2005): 773-804. <http://eudml.org/doc/116208>.

@article{Bugeaud2005,
abstract = {Let $\xi$ be a real number and let $n$ be a positive integer. We define four exponents of Diophantine approximation, which complement the exponents $w_n(\xi )$ and $w_n^*(\xi )$ defined by Mahler and Koksma. We calculate their six values when $n=2$ and $\xi$ is a real number whose continued fraction expansion coincides with some Sturmian sequence of positive integers, up to the initial terms. In particular, we obtain the exact exponent of approximation to such a continued fraction $\xi$ by quadratic surds.},
affiliation = {Université Louis Pasteur, U. F. R. de mathématiques, 7 rue René Descartes, 67084 STRASBOURG (France), Institut de Mathématiques de Luminy, U.P.R. 9016, case 907, 163 avenue de Luminy, 13288 MARSEILLE CEDEX 9 (France)},
author = {Bugeaud, Yann, Laurent, Michel},
journal = {Annales de l’institut Fourier},
keywords = {Diophantine approximation; Sturmian sequence; simultaneous approximation; transcendence measure},
language = {eng},
number = {3},
pages = {773-804},
publisher = {Association des Annales de l'Institut Fourier},
title = {Exponents of Diophantine Approximation and Sturmian Continued Fractions},
url = {http://eudml.org/doc/116208},
volume = {55},
year = {2005},
}

TY - JOUR
AU - Bugeaud, Yann
AU - Laurent, Michel
TI - Exponents of Diophantine Approximation and Sturmian Continued Fractions
JO - Annales de l’institut Fourier
PY - 2005
PB - Association des Annales de l'Institut Fourier
VL - 55
IS - 3
SP - 773
EP - 804
AB - Let $\xi$ be a real number and let $n$ be a positive integer. We define four exponents of Diophantine approximation, which complement the exponents $w_n(\xi )$ and $w_n^*(\xi )$ defined by Mahler and Koksma. We calculate their six values when $n=2$ and $\xi$ is a real number whose continued fraction expansion coincides with some Sturmian sequence of positive integers, up to the initial terms. In particular, we obtain the exact exponent of approximation to such a continued fraction $\xi$ by quadratic surds.
LA - eng
KW - Diophantine approximation; Sturmian sequence; simultaneous approximation; transcendence measure
UR - http://eudml.org/doc/116208
ER -

References

top
1. W.W. Adams, J.L. Davison, A remarkable class of continued fractions, Proc. Amer. Math. Soc. 65 (1977), 194-198 Zbl0366.10027MR441879
2. J.-P. Allouche, J.L. Davison, M. Quefféle, L.Q. Zamboni, Transcendence of Sturmian or morphic continued fractions, J. Number Theory 91 (2001), 39-66 Zbl0998.11036MR1869317
3. B. Arbour, D. Roy, A Gel'fond type criterion in degree two, Acta Arith. 11 (2004), 97-103 Zbl1064.11049MR2038064
4. A. Baker, W.M. Schmidt, Diophantine approximation and Hausdorff dimension, Proc. London Math. Soc. 21 (1970), 1-11 Zbl0206.05801MR271033
5. R.C. Baker, On approximation with algebraic numbers of bounded degree, Mathematika 23 (1976), 18-31 Zbl0327.10034MR409373
6. V.I. Bernik, Application of the Hausdorff dimension in the theory of Diophantine approximations, Acta Arith. 42 (1983), 219-253 Zbl0482.10049MR729734
7. Y. Bugeaud, On the approximation by algebraic numbers with bounded degree, Algebraic number theory and Diophantine analysis (Graz, 1998) (2000), 47-53, de Gruyter, Berlin Zbl0959.11033
8. Y. Bugeaud, Approximation par des nombres algébriques, J. Number Theory 84 (2000), 15-33 Zbl0967.11025MR1782258
9. Y. Bugeaud, Mahler's classification of numbers compared with Koksma's, Acta Arith. 110 (2003), 89-105 Zbl1029.11034MR2007546
10. Y. Bugeaud, Approximation by algebraic numbers, 160 (2004), Cambridge University Press Zbl1055.11002MR2136100
11. Y. Bugeaud, O. Teulié, Approximation d'un nombre réel par des nombres algébriques de degré donné, Acta Arith. 93 (2000), 77-86 Zbl0948.11029MR1760090
12. J. Cassaigne, Limit values of the recurrence quotient of Sturmian sequences, Theor. Comput. Sci. 218 (1999), 3-12 Zbl0916.68115MR1687748
13. H. Davenport, W.M. Schmidt, Approximation to real numbers by quadratic irrationals, Acta Arith. 13 (1967), 169-176 Zbl0155.09503MR219476
14. H. Davenport, W.M. Schmidt, Approximation to real numbers by algebraic integers, Acta Arith. 15 (1969), 393-416 Zbl0186.08603MR246822
15. H. Davenport, W.M. Schmidt, Dirichlet's theorem on Diophantine approximation, IV (1970), 113-132, Academic Press, London Zbl0226.10032
16. J.L. Davison, A series and its associated continued fraction, Proc. Amer. Math. Soc. 63 (1977), 29-32 Zbl0326.10030MR429778
17. K. Falconer, The geometry of fractal sets, 85 (1985), Cambridge University Press Zbl0587.28004MR867284
18. V. JarniK, Zur metrischen Theorie der diophantischen Approximationen, Prace Mat.-Fiz. 36 (1928/29), 91-106 Zbl0005.34602
19. V. JarniK, Zum Khintchineschen Übertragungssatz', Trav. Inst. Math. Tbilissi 3 (1938), 193-212 Zbl0019.10602
20. J.F. Koksma, Über die Mahlersche Klasseneinteilung der transzendenten Zahlen und die Approximation komplexer Zahlen durch algebraische Zahlen, Monats. Math. Phys. 48 (1939), 176-189 Zbl0021.20804MR845
21. M. Laurent, Some remarks on the approximation of complex numbers by algebraic numbers, Proceedings of the 2nd Panhellenic Conference in Algebra and Number Theory (Thessaloniki, 1998) 42 (1999), 49-57 Zbl0971.11035
22. M. Laurent, Simultaneous rational approximation to the successive powers of a real number, Indag. Math. 11 (2003), 45-53 Zbl1049.11069MR2015598
23. K. Mahler, Zur Approximation der Exponentialfunktionen und des Logarithmus. I, II, J. reine angew. Math. 166 (1932), 118-150 Zbl0003.15101
24. M. Queffélec, Approximations diophantiennes des nombres sturmiens, J. Théor. Nombres Bordeaux 14 (2002), 613-628 Zbl1076.11044MR2040697
25. A.M. Rockett, P. Szüsz, Continued Fractions, (1992), World Scientific, Singapore Zbl0925.11038MR1188878
26. D. Roy, Approximation simultanée d'un nombre et son carré, C. R. Acad. Sci. Paris 336 (2003) Zbl1038.11042MR1968892
27. D. Roy, Approximation to real numbers by cubic algebraic numbers, I, Proc. London Math. Soc. 88 (2004), 42-62 Zbl1035.11028MR2018957
28. D. Roy, Approximation to real numbers by cubic algebraic numbers, II, Ann. of Math. 158 (2003), 1081-1087 Zbl1044.11061MR2031862
29. D. Roy, Diophantine approximation in small degree, 36 (2004), 269-285, Amer. Math. Soc. Zbl1077.11051
30. V.G. Sprindzuk, Mahler's problem in metric number theory, 25 (1969), Amer. Math. Soc., Providence, R.I. Zbl0181.05502MR245527
31. E. Wirsing, Approximation mit algebraischen Zahlen beschränkten Grades, J. reine angew. Math. 206 (1961), 67-77 Zbl0097.03503MR142510

top

NotesEmbed?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

Note: Best practice suggests putting the JavaScript code just before the closing </body>` tag.