Spherical gradient manifolds

Christian Miebach[1]; Henrik Stötzel[2]

  • [1] Université de Provence Centre de Mathématiques et Informatique UMR-CNRS 6632 (LATP) 39 rue Joliot-Curie 13453 Marseille Cedex 13 (France)
  • [2] Ruhr-Universität Bochum Fakultät für Mathematik Universitätsstraße 150 44780 Bochum (Allemagne)

Annales de l’institut Fourier (2010)

  • Volume: 60, Issue: 6, page 2235-2260
  • ISSN: 0373-0956

Abstract

top
We study the action of a real-reductive group G = K exp ( 𝔭 ) on a real-analytic submanifold X of a Kähler manifold. We suppose that the action of G extends holomorphically to an action of the complexified group G on this Kähler manifold such that the action of a maximal compact subgroup is Hamiltonian. The moment map induces a gradient map μ 𝔭 : X 𝔭 . We show that μ 𝔭 almost separates the K –orbits if and only if a minimal parabolic subgroup of G has an open orbit. This generalizes Brion’s characterization of spherical Kähler manifolds with moment maps.

How to cite

top

Miebach, Christian, and Stötzel, Henrik. "Spherical gradient manifolds." Annales de l’institut Fourier 60.6 (2010): 2235-2260. <http://eudml.org/doc/116331>.

@article{Miebach2010,
abstract = {We study the action of a real-reductive group $G=K \exp (\mathfrak\{p\})$ on a real-analytic submanifold $X$ of a Kähler manifold. We suppose that the action of $G$ extends holomorphically to an action of the complexified group $G^\mathbb\{C\}$ on this Kähler manifold such that the action of a maximal compact subgroup is Hamiltonian. The moment map induces a gradient map $\mu _ \mathfrak\{p\}\colon X\rightarrow \mathfrak\{p\}$. We show that $\mu _\mathfrak\{p\}$ almost separates the $K$–orbits if and only if a minimal parabolic subgroup of $G$ has an open orbit. This generalizes Brion’s characterization of spherical Kähler manifolds with moment maps.},
affiliation = {Université de Provence Centre de Mathématiques et Informatique UMR-CNRS 6632 (LATP) 39 rue Joliot-Curie 13453 Marseille Cedex 13 (France); Ruhr-Universität Bochum Fakultät für Mathematik Universitätsstraße 150 44780 Bochum (Allemagne)},
author = {Miebach, Christian, Stötzel, Henrik},
journal = {Annales de l’institut Fourier},
keywords = {Real-reductive Lie group; Hamiltonian action; gradient map; spherical variety; real-reductive Lie group; minimal parabolic subgroup},
language = {eng},
number = {6},
pages = {2235-2260},
publisher = {Association des Annales de l’institut Fourier},
title = {Spherical gradient manifolds},
url = {http://eudml.org/doc/116331},
volume = {60},
year = {2010},
}

TY - JOUR
AU - Miebach, Christian
AU - Stötzel, Henrik
TI - Spherical gradient manifolds
JO - Annales de l’institut Fourier
PY - 2010
PB - Association des Annales de l’institut Fourier
VL - 60
IS - 6
SP - 2235
EP - 2260
AB - We study the action of a real-reductive group $G=K \exp (\mathfrak{p})$ on a real-analytic submanifold $X$ of a Kähler manifold. We suppose that the action of $G$ extends holomorphically to an action of the complexified group $G^\mathbb{C}$ on this Kähler manifold such that the action of a maximal compact subgroup is Hamiltonian. The moment map induces a gradient map $\mu _ \mathfrak{p}\colon X\rightarrow \mathfrak{p}$. We show that $\mu _\mathfrak{p}$ almost separates the $K$–orbits if and only if a minimal parabolic subgroup of $G$ has an open orbit. This generalizes Brion’s characterization of spherical Kähler manifolds with moment maps.
LA - eng
KW - Real-reductive Lie group; Hamiltonian action; gradient map; spherical variety; real-reductive Lie group; minimal parabolic subgroup
UR - http://eudml.org/doc/116331
ER -

References

top
  1. D. Akhiezer, P. Heinzner, Spherical Stein spaces, Manuscripta Math. 485 (1997), 327-334. Zbl1056.32010MR2076450
  2. D. Akhiezer, E. B. Vinberg, Weakly symmetric spaces and spherical varieties, Transform. Groups 4 (1999), 3-24. Zbl0916.53024MR1669186
  3. G. E. Bredon, Introduction to compact transformation groups, 46 (1972), Academic Press, New-York – London Zbl0246.57017MR413144
  4. M. Brion, Sur l’image de l’application moment, Séminaire d’algèbre Paul Dubreil et Marie-Paule Malliavin (Paris, 1986) 1296 (1987), 177-192, Springer, Berlin Zbl0667.58012MR932055
  5. V. Guillemin, S. Sternberg, Symplectic techniques in physics, (1984), Cambridge University Press, Cambridge Zbl0576.58012MR770935
  6. P. Heinzner, Equivariant holomorphic extensions of real analytic manifolds, Bull. Soc. Math. France 121 (1993), 445-463. Zbl0794.32022MR1242639
  7. P. Heinzner, A. T. Huckleberry, Kählerian potentials and convexity properties of the moment map, Invent. Math. 126 (1996), 65-84. Zbl0855.58025MR1408556
  8. P. Heinzner, P. Schützdeller, Convexity properties of gradient maps Zbl1198.53095
  9. P. Heinzner, G. W. Schwarz, Cartan decomposition of the moment map, Math. Ann. 337 (2007), 197-232. Zbl1110.32008MR2262782
  10. P. Heinzner, H. Stötzel, Semistable points with respect to real forms, Math. Ann. 338 (2007), 1-9. Zbl1129.32015MR2295501
  11. G. Hochschild, The structure of Lie groups, (1965), Holden-Day Inc, San Francisco Zbl0131.02702MR207883
  12. A. T. Huckleberry, E. Oeljeklaus, On holomorphically separable complex solv-manifolds, Ann. Inst. Fourier (Grenoble) 36 (1986), 57-65. Zbl0571.32012MR865660
  13. A. T. Huckleberry, T. Wurzbacher, Multiplicity-free complex manifolds, Math. Ann. 286 (1990), 261-280. Zbl0765.32016MR1032934
  14. A. W. Knapp, Lie groups beyond an introduction, 140 (2002), Birkhäuser Boston Inc., Boston, MA Zbl1075.22501MR1920389
  15. B. Kostant, On convexity, the Weyl group and the Iwasawa decomposition, Ann. Sci. École Norm. Sup. (4) 6 (1973), 413-455. Zbl0293.22019MR364552
  16. Y. Matsushima, A. Morimoto, Sur certains espaces fibrés holomorphes sur une variété de Stein, Bull. Soc. Math. France 88 (1960), 137-155. Zbl0094.28104MR123739
  17. H. Stötzel, Quotients of real reductive group actions related to orbit type strata, (2008), Ruhr-Universität Bochum Zbl1153.14301
  18. J. A.. Wolf, Harmonic analysis on commutative spaces, 142 (2007), American Mathematical Society, Providence, RI Zbl1156.22010MR2328043

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.