Spherical gradient manifolds
Christian Miebach[1]; Henrik Stötzel[2]
- [1] Université de Provence Centre de Mathématiques et Informatique UMR-CNRS 6632 (LATP) 39 rue Joliot-Curie 13453 Marseille Cedex 13 (France)
- [2] Ruhr-Universität Bochum Fakultät für Mathematik Universitätsstraße 150 44780 Bochum (Allemagne)
Annales de l’institut Fourier (2010)
- Volume: 60, Issue: 6, page 2235-2260
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topMiebach, Christian, and Stötzel, Henrik. "Spherical gradient manifolds." Annales de l’institut Fourier 60.6 (2010): 2235-2260. <http://eudml.org/doc/116331>.
@article{Miebach2010,
abstract = {We study the action of a real-reductive group $G=K \exp (\mathfrak\{p\})$ on a real-analytic submanifold $X$ of a Kähler manifold. We suppose that the action of $G$ extends holomorphically to an action of the complexified group $G^\mathbb\{C\}$ on this Kähler manifold such that the action of a maximal compact subgroup is Hamiltonian. The moment map induces a gradient map $\mu _ \mathfrak\{p\}\colon X\rightarrow \mathfrak\{p\}$. We show that $\mu _\mathfrak\{p\}$ almost separates the $K$–orbits if and only if a minimal parabolic subgroup of $G$ has an open orbit. This generalizes Brion’s characterization of spherical Kähler manifolds with moment maps.},
affiliation = {Université de Provence Centre de Mathématiques et Informatique UMR-CNRS 6632 (LATP) 39 rue Joliot-Curie 13453 Marseille Cedex 13 (France); Ruhr-Universität Bochum Fakultät für Mathematik Universitätsstraße 150 44780 Bochum (Allemagne)},
author = {Miebach, Christian, Stötzel, Henrik},
journal = {Annales de l’institut Fourier},
keywords = {Real-reductive Lie group; Hamiltonian action; gradient map; spherical variety; real-reductive Lie group; minimal parabolic subgroup},
language = {eng},
number = {6},
pages = {2235-2260},
publisher = {Association des Annales de l’institut Fourier},
title = {Spherical gradient manifolds},
url = {http://eudml.org/doc/116331},
volume = {60},
year = {2010},
}
TY - JOUR
AU - Miebach, Christian
AU - Stötzel, Henrik
TI - Spherical gradient manifolds
JO - Annales de l’institut Fourier
PY - 2010
PB - Association des Annales de l’institut Fourier
VL - 60
IS - 6
SP - 2235
EP - 2260
AB - We study the action of a real-reductive group $G=K \exp (\mathfrak{p})$ on a real-analytic submanifold $X$ of a Kähler manifold. We suppose that the action of $G$ extends holomorphically to an action of the complexified group $G^\mathbb{C}$ on this Kähler manifold such that the action of a maximal compact subgroup is Hamiltonian. The moment map induces a gradient map $\mu _ \mathfrak{p}\colon X\rightarrow \mathfrak{p}$. We show that $\mu _\mathfrak{p}$ almost separates the $K$–orbits if and only if a minimal parabolic subgroup of $G$ has an open orbit. This generalizes Brion’s characterization of spherical Kähler manifolds with moment maps.
LA - eng
KW - Real-reductive Lie group; Hamiltonian action; gradient map; spherical variety; real-reductive Lie group; minimal parabolic subgroup
UR - http://eudml.org/doc/116331
ER -
References
top- D. Akhiezer, P. Heinzner, Spherical Stein spaces, Manuscripta Math. 485 (1997), 327-334. Zbl1056.32010MR2076450
- D. Akhiezer, E. B. Vinberg, Weakly symmetric spaces and spherical varieties, Transform. Groups 4 (1999), 3-24. Zbl0916.53024MR1669186
- G. E. Bredon, Introduction to compact transformation groups, 46 (1972), Academic Press, New-York – London Zbl0246.57017MR413144
- M. Brion, Sur l’image de l’application moment, Séminaire d’algèbre Paul Dubreil et Marie-Paule Malliavin (Paris, 1986) 1296 (1987), 177-192, Springer, Berlin Zbl0667.58012MR932055
- V. Guillemin, S. Sternberg, Symplectic techniques in physics, (1984), Cambridge University Press, Cambridge Zbl0576.58012MR770935
- P. Heinzner, Equivariant holomorphic extensions of real analytic manifolds, Bull. Soc. Math. France 121 (1993), 445-463. Zbl0794.32022MR1242639
- P. Heinzner, A. T. Huckleberry, Kählerian potentials and convexity properties of the moment map, Invent. Math. 126 (1996), 65-84. Zbl0855.58025MR1408556
- P. Heinzner, P. Schützdeller, Convexity properties of gradient maps Zbl1198.53095
- P. Heinzner, G. W. Schwarz, Cartan decomposition of the moment map, Math. Ann. 337 (2007), 197-232. Zbl1110.32008MR2262782
- P. Heinzner, H. Stötzel, Semistable points with respect to real forms, Math. Ann. 338 (2007), 1-9. Zbl1129.32015MR2295501
- G. Hochschild, The structure of Lie groups, (1965), Holden-Day Inc, San Francisco Zbl0131.02702MR207883
- A. T. Huckleberry, E. Oeljeklaus, On holomorphically separable complex solv-manifolds, Ann. Inst. Fourier (Grenoble) 36 (1986), 57-65. Zbl0571.32012MR865660
- A. T. Huckleberry, T. Wurzbacher, Multiplicity-free complex manifolds, Math. Ann. 286 (1990), 261-280. Zbl0765.32016MR1032934
- A. W. Knapp, Lie groups beyond an introduction, 140 (2002), Birkhäuser Boston Inc., Boston, MA Zbl1075.22501MR1920389
- B. Kostant, On convexity, the Weyl group and the Iwasawa decomposition, Ann. Sci. École Norm. Sup. (4) 6 (1973), 413-455. Zbl0293.22019MR364552
- Y. Matsushima, A. Morimoto, Sur certains espaces fibrés holomorphes sur une variété de Stein, Bull. Soc. Math. France 88 (1960), 137-155. Zbl0094.28104MR123739
- H. Stötzel, Quotients of real reductive group actions related to orbit type strata, (2008), Ruhr-Universität Bochum Zbl1153.14301
- J. A.. Wolf, Harmonic analysis on commutative spaces, 142 (2007), American Mathematical Society, Providence, RI Zbl1156.22010MR2328043
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.