Asymptotic behavior of weighted quadratic variation of bi-fractional Brownian motion

Rachid Belfadli[1]

  • [1] Department of Mathematics Cadi Ayyad University Semlalia Faculty of Sciences 2390 Marrakesh Morocco

Annales mathématiques Blaise Pascal (2010)

  • Volume: 17, Issue: 1, page 165-181
  • ISSN: 1259-1734

Abstract

top
We prove, by means of Malliavin calculus, the convergence in L 2 of some properly renormalized weighted quadratic variations of bi-fractional Brownian motion (biFBM) with parameters H and K , when H < 1 / 4 and K ( 0 , 1 ] .

How to cite

top

Belfadli, Rachid. "Asymptotic behavior of weighted quadratic variation of bi-fractional Brownian motion." Annales mathématiques Blaise Pascal 17.1 (2010): 165-181. <http://eudml.org/doc/116346>.

@article{Belfadli2010,
abstract = {We prove, by means of Malliavin calculus, the convergence in $L^\{2\}$ of some properly renormalized weighted quadratic variations of bi-fractional Brownian motion (biFBM) with parameters $H$ and $K$, when $H&lt;1/4$ and $K\in (0,1]$.},
affiliation = {Department of Mathematics Cadi Ayyad University Semlalia Faculty of Sciences 2390 Marrakesh Morocco},
author = {Belfadli, Rachid},
journal = {Annales mathématiques Blaise Pascal},
keywords = {Bi-fractional Brownian motion; Weighted quadratic variations; Malliavan calculus; bi-fractional Brownian motion; weighted quadratic variations; Malliavin calculus},
language = {eng},
month = {1},
number = {1},
pages = {165-181},
publisher = {Annales mathématiques Blaise Pascal},
title = {Asymptotic behavior of weighted quadratic variation of bi-fractional Brownian motion},
url = {http://eudml.org/doc/116346},
volume = {17},
year = {2010},
}

TY - JOUR
AU - Belfadli, Rachid
TI - Asymptotic behavior of weighted quadratic variation of bi-fractional Brownian motion
JO - Annales mathématiques Blaise Pascal
DA - 2010/1//
PB - Annales mathématiques Blaise Pascal
VL - 17
IS - 1
SP - 165
EP - 181
AB - We prove, by means of Malliavin calculus, the convergence in $L^{2}$ of some properly renormalized weighted quadratic variations of bi-fractional Brownian motion (biFBM) with parameters $H$ and $K$, when $H&lt;1/4$ and $K\in (0,1]$.
LA - eng
KW - Bi-fractional Brownian motion; Weighted quadratic variations; Malliavan calculus; bi-fractional Brownian motion; weighted quadratic variations; Malliavin calculus
UR - http://eudml.org/doc/116346
ER -

References

top
  1. P. Breuer, P. Major, Central limit theorems for nonlinear functionals of Gaussian fields, J. Multivariate Anal. 13 (3) (1938), 425-441 Zbl0518.60023MR716933
  2. Mihai Gradinaru, Ivan Nourdin, Milstein’s type schemes for fractional SDEs, Ann. Inst. Henri Poincaré Probab. Stat. 45 (2009), 1085-1098 Zbl1197.60070MR2572165
  3. C. Houdré, J. Villa, An example of infnite dimensional quasi-helix, Contemporary Mathematics, Amer. Math. Soc. 336 (2003), 195-201 Zbl1046.60033MR2037165
  4. A. Neuenkirch, I. Nourdin, Exact rates of convergence of some approximations schemes associated to SDEs driven by a fractional Brownian motion, J. Theor. Probab. 20(4) (2008), 871-899 Zbl1141.60043MR2359060
  5. I. Nourdin, Asymptotic behavior of weighted quadratic and cubic variations of fractional Brownian motion, Ann. Probab. 36(6) (2008), 2159-2175 Zbl1155.60010MR2478679
  6. I. Nourdin, D. Nualart, C. A. Tudor, Central and non central limit theorems for weighted power variations of fractional brownian motion, (2008) Zbl1221.60031
  7. Ivan Nourdin, Anthony Réveillac, Asymptotic behavior of weighted quadratic variations of fractional Brownian motion: the critical case H = 1 / 4 , Ann. Probab. 37 (2009), 2200-2230 Zbl1200.60023MR2573556
  8. D. Nualart, The Malliavin calculus and related topics, (2006), Springer Verlag, 2 nd edition, Berlin Zbl1099.60003MR2200233
  9. F. Russo, C. A. Tudor, On the bifractional Brownian motion, Stochastic Process. Appl. 5 (2006), 830-856 Zbl1100.60019MR2218338
  10. G. Samorodnitsky, M. S. Taqqu, Stable non-Gaussian Random Processes. Stochastic models with infinite variance, (1994), Chapman & Hall, New York Zbl0925.60027MR1280932
  11. C. A. Tudor, Y. Xiao, Sample Path Properties of Bifractional Brownian Motion, Bernoulli 13 (4) (2007), 1023-1052 Zbl1132.60034MR2364225

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.