Asymptotic behavior of weighted quadratic variation of bi-fractional Brownian motion
- [1] Department of Mathematics Cadi Ayyad University Semlalia Faculty of Sciences 2390 Marrakesh Morocco
Annales mathématiques Blaise Pascal (2010)
- Volume: 17, Issue: 1, page 165-181
- ISSN: 1259-1734
Access Full Article
topAbstract
topHow to cite
topBelfadli, Rachid. "Asymptotic behavior of weighted quadratic variation of bi-fractional Brownian motion." Annales mathématiques Blaise Pascal 17.1 (2010): 165-181. <http://eudml.org/doc/116346>.
@article{Belfadli2010,
abstract = {We prove, by means of Malliavin calculus, the convergence in $L^\{2\}$ of some properly renormalized weighted quadratic variations of bi-fractional Brownian motion (biFBM) with parameters $H$ and $K$, when $H<1/4$ and $K\in (0,1]$.},
affiliation = {Department of Mathematics Cadi Ayyad University Semlalia Faculty of Sciences 2390 Marrakesh Morocco},
author = {Belfadli, Rachid},
journal = {Annales mathématiques Blaise Pascal},
keywords = {Bi-fractional Brownian motion; Weighted quadratic variations; Malliavan calculus; bi-fractional Brownian motion; weighted quadratic variations; Malliavin calculus},
language = {eng},
month = {1},
number = {1},
pages = {165-181},
publisher = {Annales mathématiques Blaise Pascal},
title = {Asymptotic behavior of weighted quadratic variation of bi-fractional Brownian motion},
url = {http://eudml.org/doc/116346},
volume = {17},
year = {2010},
}
TY - JOUR
AU - Belfadli, Rachid
TI - Asymptotic behavior of weighted quadratic variation of bi-fractional Brownian motion
JO - Annales mathématiques Blaise Pascal
DA - 2010/1//
PB - Annales mathématiques Blaise Pascal
VL - 17
IS - 1
SP - 165
EP - 181
AB - We prove, by means of Malliavin calculus, the convergence in $L^{2}$ of some properly renormalized weighted quadratic variations of bi-fractional Brownian motion (biFBM) with parameters $H$ and $K$, when $H<1/4$ and $K\in (0,1]$.
LA - eng
KW - Bi-fractional Brownian motion; Weighted quadratic variations; Malliavan calculus; bi-fractional Brownian motion; weighted quadratic variations; Malliavin calculus
UR - http://eudml.org/doc/116346
ER -
References
top- P. Breuer, P. Major, Central limit theorems for nonlinear functionals of Gaussian fields, J. Multivariate Anal. 13 (3) (1938), 425-441 Zbl0518.60023MR716933
- Mihai Gradinaru, Ivan Nourdin, Milstein’s type schemes for fractional SDEs, Ann. Inst. Henri Poincaré Probab. Stat. 45 (2009), 1085-1098 Zbl1197.60070MR2572165
- C. Houdré, J. Villa, An example of infnite dimensional quasi-helix, Contemporary Mathematics, Amer. Math. Soc. 336 (2003), 195-201 Zbl1046.60033MR2037165
- A. Neuenkirch, I. Nourdin, Exact rates of convergence of some approximations schemes associated to SDEs driven by a fractional Brownian motion, J. Theor. Probab. 20(4) (2008), 871-899 Zbl1141.60043MR2359060
- I. Nourdin, Asymptotic behavior of weighted quadratic and cubic variations of fractional Brownian motion, Ann. Probab. 36(6) (2008), 2159-2175 Zbl1155.60010MR2478679
- I. Nourdin, D. Nualart, C. A. Tudor, Central and non central limit theorems for weighted power variations of fractional brownian motion, (2008) Zbl1221.60031
- Ivan Nourdin, Anthony Réveillac, Asymptotic behavior of weighted quadratic variations of fractional Brownian motion: the critical case , Ann. Probab. 37 (2009), 2200-2230 Zbl1200.60023MR2573556
- D. Nualart, The Malliavin calculus and related topics, (2006), Springer Verlag, 2 nd edition, Berlin Zbl1099.60003MR2200233
- F. Russo, C. A. Tudor, On the bifractional Brownian motion, Stochastic Process. Appl. 5 (2006), 830-856 Zbl1100.60019MR2218338
- G. Samorodnitsky, M. S. Taqqu, Stable non-Gaussian Random Processes. Stochastic models with infinite variance, (1994), Chapman & Hall, New York Zbl0925.60027MR1280932
- C. A. Tudor, Y. Xiao, Sample Path Properties of Bifractional Brownian Motion, Bernoulli 13 (4) (2007), 1023-1052 Zbl1132.60034MR2364225
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.