Milstein’s type schemes for fractional SDEs

Mihai Gradinaru; Ivan Nourdin

Annales de l'I.H.P. Probabilités et statistiques (2009)

  • Volume: 45, Issue: 4, page 1085-1098
  • ISSN: 0246-0203

Abstract

top
Weighted power variations of fractional brownian motion B are used to compute the exact rate of convergence of some approximating schemes associated to one-dimensional stochastic differential equations (SDEs) driven by B. The limit of the error between the exact solution and the considered scheme is computed explicitly.

How to cite

top

Gradinaru, Mihai, and Nourdin, Ivan. "Milstein’s type schemes for fractional SDEs." Annales de l'I.H.P. Probabilités et statistiques 45.4 (2009): 1085-1098. <http://eudml.org/doc/78054>.

@article{Gradinaru2009,
abstract = {Weighted power variations of fractional brownian motion B are used to compute the exact rate of convergence of some approximating schemes associated to one-dimensional stochastic differential equations (SDEs) driven by B. The limit of the error between the exact solution and the considered scheme is computed explicitly.},
author = {Gradinaru, Mihai, Nourdin, Ivan},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {fractional brownian motion; weighted power variations; stochastic differential equation; Milstein’s type scheme; exact rate of convergence; fractional Brownian motion; Milstein's type scheme},
language = {eng},
number = {4},
pages = {1085-1098},
publisher = {Gauthier-Villars},
title = {Milstein’s type schemes for fractional SDEs},
url = {http://eudml.org/doc/78054},
volume = {45},
year = {2009},
}

TY - JOUR
AU - Gradinaru, Mihai
AU - Nourdin, Ivan
TI - Milstein’s type schemes for fractional SDEs
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2009
PB - Gauthier-Villars
VL - 45
IS - 4
SP - 1085
EP - 1098
AB - Weighted power variations of fractional brownian motion B are used to compute the exact rate of convergence of some approximating schemes associated to one-dimensional stochastic differential equations (SDEs) driven by B. The limit of the error between the exact solution and the considered scheme is computed explicitly.
LA - eng
KW - fractional brownian motion; weighted power variations; stochastic differential equation; Milstein’s type scheme; exact rate of convergence; fractional Brownian motion; Milstein's type scheme
UR - http://eudml.org/doc/78054
ER -

References

top
  1. [1] J. M. Corcuera, D. Nualart and J. H. C. Woerner. Power variation of some integral fractional processes. Bernoulli 12 (2006) 713–735. Zbl1130.60058MR2248234
  2. [2] L. Coutin and Z. Qian. Stochastic analysis, rough path analysis and fractional Brownian motions. Probab. Theory Related Fields 122 (2002) 108–140. Zbl1047.60029MR1883719
  3. [3] A. M. Davie. Differential equations driven by rough paths: An approach via discrete approximation. AMRX Appl. Math. Res. Express 2007 (2007) abm009, 1–40. Zbl1163.34005MR2387018
  4. [4] M. Gradinaru and I. Nourdin. Approximation at first and second order of the m–variation of the fractional Brownian motion. Electron. J. Probab. 8 (2003) 1–26. Zbl1063.60079MR2041819
  5. [5] M. Gradinaru, I. Nourdin, F. Russo and P. Vallois. m-order integrals and generalized Itô’s formula; the case of a fractional Brownian motion with any Hurst index. Ann. Inst. H. Poincaré Probab. Statist. 41 (2005) 781–806. Zbl1083.60045MR2144234
  6. [6] J. Jacod. Limit of random measures associated with the increments of a Brownian semimartingale. LPMA, preprint (revised version), 1994. 
  7. [7] R. Klein and E. Giné. On quadratic variation of processes with Gaussian increments. Ann. Probab. 3 (1975) 716–721. Zbl0318.60031MR378070
  8. [8] T. G. Kurtz and P. Protter. Wong–Zakai corrections, random evolutions and simulation schemes for SDEs. In Stochastic Analysis 331–346. Academic Press, Boston, MA, 1991. Zbl0762.60047MR1119837
  9. [9] J. R. León and C. Ludeña. Limits for weighted p-variations and likewise functionals of fractional diffusions with drift. Stochastic Process. Appl. 117 (2007) 271–296. Zbl1110.60023MR2290877
  10. [10] S. J. Lin. Stochastic analysis of fractional Brownian motions. Stochastics Stochastics Rep. 55 (1995) 121–140. Zbl0886.60076MR1382288
  11. [11] T. J. Lyons. Differential equations driven by rough signals. Rev. Mat. Iberoamericana 14 (1998) 215–310. Zbl0923.34056MR1654527
  12. [12] Y. Mishura and G. Shevchenko. The rate of convergence of Euler approximations for solutions of stochastic differential equations driven by fractional Brownian motion. Stochastics. To appear. Available at arXiv:0705.1773. Zbl1154.60046MR2456334
  13. [13] A. Neuenkirch. Optimal approximation of SDE’s with additive fractional noise. J. Complexity 22 (2006) 459–475. Zbl1106.65003MR2246891
  14. [14] A. Neuenkirch. Optimal pointwise approximation of stochastic differential equations driven by fractional Brownian motion. Stochastic Process. Appl. 118 (2008) 2294–2333. Zbl1154.60338MR2474352
  15. [15] A. Neuenkirch and I. Nourdin. Exact rate of convergence of some approximation schemes associated to SDEs driven by a fractional Brownian motion. J. Theoret. Probab. 20 (2007) 871–899. Zbl1141.60043MR2359060
  16. [16] I. Nourdin, D. Nualart, C. Tudor. Central and non-central limit theorem for weighted power variation of fractional Brownian motion, 2007. Available at arXiv:0710.5639. Zbl1221.60031
  17. [17] I. Nourdin. Schémas d’approximation associés à une équation différentialle dirigée par une fonction hölderienne; cas du mouvement brownien fractionnaire. C. R. Acad. Sci. Paris, Ser. I 340 (2005) 611–614. Zbl1075.60073MR2138713
  18. [18] I. Nourdin. A simple theory for the study of SDEs driven by a fractional Brownian motion, in dimension one. Sém. Probab. XLI (2008) 181–197. Zbl1148.60034MR2483731
  19. [19] I. Nourdin and G. Peccati. Weighted power variations of iterated Brownian motion. Electron. J. Probab. 13 (2008) 1229–1256. Zbl1193.60028MR2430706
  20. [20] I. Nourdin and T. Simon. Correcting Newton–Côtes integrals by Lévy areas. Bernoulli 13 (2007) 695–711. Zbl1132.60047MR2348747
  21. [21] D. Nualart and A. Rǎsçanu. Differential equations driven by fractional Brownian motion. Collect. Math. 53 (2002) 55–81. Zbl1018.60057MR1893308
  22. [22] F. Russo and P. Vallois. Forward, backward and symmetric stochastic integration. Probab. Theory Related Fields 97 (1993) 403–421. Zbl0792.60046MR1245252
  23. [23] D. Talay. Résolution trajectorielle et analyse numérique des équations différentielles stochastiques. Stochastics 9 (1983) 275–306. Zbl0512.60041MR707643
  24. [24] M. Zähle. Integration with respect to fractal functions and stochastic calculus I. Probab. Theory Related Fields 111 (1998) 333–374. Zbl0918.60037MR1640795

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.