Milstein’s type schemes for fractional SDEs
Annales de l'I.H.P. Probabilités et statistiques (2009)
- Volume: 45, Issue: 4, page 1085-1098
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topGradinaru, Mihai, and Nourdin, Ivan. "Milstein’s type schemes for fractional SDEs." Annales de l'I.H.P. Probabilités et statistiques 45.4 (2009): 1085-1098. <http://eudml.org/doc/78054>.
@article{Gradinaru2009,
abstract = {Weighted power variations of fractional brownian motion B are used to compute the exact rate of convergence of some approximating schemes associated to one-dimensional stochastic differential equations (SDEs) driven by B. The limit of the error between the exact solution and the considered scheme is computed explicitly.},
author = {Gradinaru, Mihai, Nourdin, Ivan},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {fractional brownian motion; weighted power variations; stochastic differential equation; Milstein’s type scheme; exact rate of convergence; fractional Brownian motion; Milstein's type scheme},
language = {eng},
number = {4},
pages = {1085-1098},
publisher = {Gauthier-Villars},
title = {Milstein’s type schemes for fractional SDEs},
url = {http://eudml.org/doc/78054},
volume = {45},
year = {2009},
}
TY - JOUR
AU - Gradinaru, Mihai
AU - Nourdin, Ivan
TI - Milstein’s type schemes for fractional SDEs
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2009
PB - Gauthier-Villars
VL - 45
IS - 4
SP - 1085
EP - 1098
AB - Weighted power variations of fractional brownian motion B are used to compute the exact rate of convergence of some approximating schemes associated to one-dimensional stochastic differential equations (SDEs) driven by B. The limit of the error between the exact solution and the considered scheme is computed explicitly.
LA - eng
KW - fractional brownian motion; weighted power variations; stochastic differential equation; Milstein’s type scheme; exact rate of convergence; fractional Brownian motion; Milstein's type scheme
UR - http://eudml.org/doc/78054
ER -
References
top- [1] J. M. Corcuera, D. Nualart and J. H. C. Woerner. Power variation of some integral fractional processes. Bernoulli 12 (2006) 713–735. Zbl1130.60058MR2248234
- [2] L. Coutin and Z. Qian. Stochastic analysis, rough path analysis and fractional Brownian motions. Probab. Theory Related Fields 122 (2002) 108–140. Zbl1047.60029MR1883719
- [3] A. M. Davie. Differential equations driven by rough paths: An approach via discrete approximation. AMRX Appl. Math. Res. Express 2007 (2007) abm009, 1–40. Zbl1163.34005MR2387018
- [4] M. Gradinaru and I. Nourdin. Approximation at first and second order of the m–variation of the fractional Brownian motion. Electron. J. Probab. 8 (2003) 1–26. Zbl1063.60079MR2041819
- [5] M. Gradinaru, I. Nourdin, F. Russo and P. Vallois. m-order integrals and generalized Itô’s formula; the case of a fractional Brownian motion with any Hurst index. Ann. Inst. H. Poincaré Probab. Statist. 41 (2005) 781–806. Zbl1083.60045MR2144234
- [6] J. Jacod. Limit of random measures associated with the increments of a Brownian semimartingale. LPMA, preprint (revised version), 1994.
- [7] R. Klein and E. Giné. On quadratic variation of processes with Gaussian increments. Ann. Probab. 3 (1975) 716–721. Zbl0318.60031MR378070
- [8] T. G. Kurtz and P. Protter. Wong–Zakai corrections, random evolutions and simulation schemes for SDEs. In Stochastic Analysis 331–346. Academic Press, Boston, MA, 1991. Zbl0762.60047MR1119837
- [9] J. R. León and C. Ludeña. Limits for weighted p-variations and likewise functionals of fractional diffusions with drift. Stochastic Process. Appl. 117 (2007) 271–296. Zbl1110.60023MR2290877
- [10] S. J. Lin. Stochastic analysis of fractional Brownian motions. Stochastics Stochastics Rep. 55 (1995) 121–140. Zbl0886.60076MR1382288
- [11] T. J. Lyons. Differential equations driven by rough signals. Rev. Mat. Iberoamericana 14 (1998) 215–310. Zbl0923.34056MR1654527
- [12] Y. Mishura and G. Shevchenko. The rate of convergence of Euler approximations for solutions of stochastic differential equations driven by fractional Brownian motion. Stochastics. To appear. Available at arXiv:0705.1773. Zbl1154.60046MR2456334
- [13] A. Neuenkirch. Optimal approximation of SDE’s with additive fractional noise. J. Complexity 22 (2006) 459–475. Zbl1106.65003MR2246891
- [14] A. Neuenkirch. Optimal pointwise approximation of stochastic differential equations driven by fractional Brownian motion. Stochastic Process. Appl. 118 (2008) 2294–2333. Zbl1154.60338MR2474352
- [15] A. Neuenkirch and I. Nourdin. Exact rate of convergence of some approximation schemes associated to SDEs driven by a fractional Brownian motion. J. Theoret. Probab. 20 (2007) 871–899. Zbl1141.60043MR2359060
- [16] I. Nourdin, D. Nualart, C. Tudor. Central and non-central limit theorem for weighted power variation of fractional Brownian motion, 2007. Available at arXiv:0710.5639. Zbl1221.60031
- [17] I. Nourdin. Schémas d’approximation associés à une équation différentialle dirigée par une fonction hölderienne; cas du mouvement brownien fractionnaire. C. R. Acad. Sci. Paris, Ser. I 340 (2005) 611–614. Zbl1075.60073MR2138713
- [18] I. Nourdin. A simple theory for the study of SDEs driven by a fractional Brownian motion, in dimension one. Sém. Probab. XLI (2008) 181–197. Zbl1148.60034MR2483731
- [19] I. Nourdin and G. Peccati. Weighted power variations of iterated Brownian motion. Electron. J. Probab. 13 (2008) 1229–1256. Zbl1193.60028MR2430706
- [20] I. Nourdin and T. Simon. Correcting Newton–Côtes integrals by Lévy areas. Bernoulli 13 (2007) 695–711. Zbl1132.60047MR2348747
- [21] D. Nualart and A. Rǎsçanu. Differential equations driven by fractional Brownian motion. Collect. Math. 53 (2002) 55–81. Zbl1018.60057MR1893308
- [22] F. Russo and P. Vallois. Forward, backward and symmetric stochastic integration. Probab. Theory Related Fields 97 (1993) 403–421. Zbl0792.60046MR1245252
- [23] D. Talay. Résolution trajectorielle et analyse numérique des équations différentielles stochastiques. Stochastics 9 (1983) 275–306. Zbl0512.60041MR707643
- [24] M. Zähle. Integration with respect to fractal functions and stochastic calculus I. Probab. Theory Related Fields 111 (1998) 333–374. Zbl0918.60037MR1640795
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.