Central and non-central limit theorems for weighted power variations of fractional brownian motion

Ivan Nourdin; David Nualart; Ciprian A. Tudor

Annales de l'I.H.P. Probabilités et statistiques (2010)

  • Volume: 46, Issue: 4, page 1055-1079
  • ISSN: 0246-0203

Abstract

top
In this paper, we prove some central and non-central limit theorems for renormalized weighted power variations of order q≥2 of the fractional brownian motion with Hurst parameter H∈(0, 1), where q is an integer. The central limit holds for 1/2q<H≤1−1/2q, the limit being a conditionally gaussian distribution. If H<1/2q we show the convergence in L2 to a limit which only depends on the fractional brownian motion, and if H>1−1/2q we show the convergence in L2 to a stochastic integral with respect to the Hermite process of order q.

How to cite

top

Nourdin, Ivan, Nualart, David, and Tudor, Ciprian A.. "Central and non-central limit theorems for weighted power variations of fractional brownian motion." Annales de l'I.H.P. Probabilités et statistiques 46.4 (2010): 1055-1079. <http://eudml.org/doc/241766>.

@article{Nourdin2010,
abstract = {In this paper, we prove some central and non-central limit theorems for renormalized weighted power variations of order q≥2 of the fractional brownian motion with Hurst parameter H∈(0, 1), where q is an integer. The central limit holds for 1/2q&lt;H≤1−1/2q, the limit being a conditionally gaussian distribution. If H&lt;1/2q we show the convergence in L2 to a limit which only depends on the fractional brownian motion, and if H&gt;1−1/2q we show the convergence in L2 to a stochastic integral with respect to the Hermite process of order q.},
author = {Nourdin, Ivan, Nualart, David, Tudor, Ciprian A.},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {fractional brownian motion; central limit theorem; non-central limit theorem; Hermite process; fractional Brownian motion},
language = {eng},
number = {4},
pages = {1055-1079},
publisher = {Gauthier-Villars},
title = {Central and non-central limit theorems for weighted power variations of fractional brownian motion},
url = {http://eudml.org/doc/241766},
volume = {46},
year = {2010},
}

TY - JOUR
AU - Nourdin, Ivan
AU - Nualart, David
AU - Tudor, Ciprian A.
TI - Central and non-central limit theorems for weighted power variations of fractional brownian motion
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2010
PB - Gauthier-Villars
VL - 46
IS - 4
SP - 1055
EP - 1079
AB - In this paper, we prove some central and non-central limit theorems for renormalized weighted power variations of order q≥2 of the fractional brownian motion with Hurst parameter H∈(0, 1), where q is an integer. The central limit holds for 1/2q&lt;H≤1−1/2q, the limit being a conditionally gaussian distribution. If H&lt;1/2q we show the convergence in L2 to a limit which only depends on the fractional brownian motion, and if H&gt;1−1/2q we show the convergence in L2 to a stochastic integral with respect to the Hermite process of order q.
LA - eng
KW - fractional brownian motion; central limit theorem; non-central limit theorem; Hermite process; fractional Brownian motion
UR - http://eudml.org/doc/241766
ER -

References

top
  1. [1] P. Breuer and P. Major. Central limit theorems for nonlinear functionals of Gaussian fields. J. Multivariate Anal. 13 (1983) 425–441. Zbl0518.60023MR716933
  2. [2] K. Burdzy and J. Swanson. A change of variable formula with Itô correction term. Preprint, 2008. Available at arXiv:0802.3356. Zbl1204.60044MR2722787
  3. [3] P. Cheridito and D. Nualart. Stochastic integral of divergence type with respect to fractional Brownian motion with Hurst parameter H in (0, 1/2). Ann. Inst. H. Poincaré Probab. Statist. 41 (2005) 1049–1081. Zbl1083.60027MR2172209
  4. [4] J. M. Corcuera, D. Nualart and J. H. C. Woerner. Power variation of some integral fractional processes. Bernoulli 12 (2006) 713–735. Zbl1130.60058MR2248234
  5. [5] R. L. Dobrushin and P. Major. Non-central limit theorems for nonlinear functionals of Gaussian fields. Z. Wahrsch. Verw. Gebiete 50 (1979) 27–52. Zbl0397.60034MR550122
  6. [6] L. Giraitis and D. Surgailis. CLT and other limit theorems for functionals of Gaussian processes. Z. Wahrsch. Verw. Gebiete 70 (1985) 191–212. Zbl0575.60024MR799146
  7. [7] M. Gradinaru and I. Nourdin. Milstein’s type scheme for fractional SDEs. Ann. Inst. H. Poincaré Probab. Statist. (2007). To appear. Available at arXiv:math/0702317. Zbl1197.60070MR2572165
  8. [8] M. Gradinaru, I. Nourdin, F. Russo and P. Vallois. m-order integrals and Itô’s formula for non-semimartingale processes; the case of a fractional Brownian motion with any Hurst index. Ann. Inst. H. Poincaré Probab. Statist. 41 (2005) 781–806. Zbl1083.60045MR2144234
  9. [9] M. Gradinaru, F. Russo and P. Vallois. Generalized covariations, local time and Stratonovich Itô’s formula for fractional Brownian motion with Hurst index H≥¼. Ann. Probab. 31 (2001) 1772–1820. Zbl1059.60067MR2016600
  10. [10] J. Jacod. Limit of random measures associated with the increments of a Brownian semimartingale. Preprint. Univ. Paris VI (revised version, unpublished work), 1994. 
  11. [11] J. León and C. Ludeña. Limits for weighted p-variations and likewise functionals of fractional diffusions with drift. Stochastic Proc. Appl. 117 (2006) 271–296. Zbl1110.60023MR2290877
  12. [12] A. Neuenkirch and I. Nourdin. Exact rate of convergence of some approximation schemes associated to SDEs driven by a fractional Brownian motion. J. Theoret. Probab. 20 (2007) 871–899. Zbl1141.60043MR2359060
  13. [13] I. Nourdin. A simple theory for the study of SDEs driven by a fractional Brownian motion, in dimension one. In Séminaire de Probabilités XLI 181–197. Springer, Berlin, 2008. Zbl1148.60034MR2483731
  14. [14] I. Nourdin. Asymptotic behavior of some weighted quadratic and cubic variations of the fractional Brownian motion. Ann. Probab. 36 (2008) 2159–2175. Zbl1155.60010MR2478679
  15. [15] I. Nourdin and D. Nualart. Central limit theorems for multiple Skorohod integrals. J. Theoret. Probab. (2008). In revision. Available at arXiv:0707.3448. Zbl1202.60038MR2591903
  16. [16] I. Nourdin and G. Peccati. Weighted power variations of iterated Brownian motion. Electron. J. Probab. 13 (2007) 1229–1256 (electronic). Zbl1193.60028MR2430706
  17. [17] I. Nourdin and A. Réveillac. Asymptotic behavior of weighted quadratic variations of fractional Brownian motion: The critical case H=1/4. Ann. Probab. (2008). To appear. Available at arXiv:0802.3307. Zbl1200.60023MR2573556
  18. [18] D. Nualart. Malliavin Calculus and Related Topics, 2nd edition. Springer, New York, 2005. Zbl0837.60050MR1344217
  19. [19] D. Nualart. Stochastic calculus with respect to the fractional Brownian motion and applications. Contemp. Math. 336 (2003) 3–39. Zbl1063.60080MR2037156
  20. [20] G. Peccati and C. A. Tudor. Gaussian limits for vector-valued multiple stochastic integrals. In Séminaire de Probabilités XXXVIII 247–262. Lecture Notes in Math. 1857. Springer, Berlin, 2005. Zbl1063.60027MR2126978
  21. [21] M. Taqqu. Convergence of integrated processes of arbitrary Hermite rank. Z. Wahrsch. Verw. Gebiete 50 (1979) 53–83. Zbl0397.60028MR550123
  22. [22] C. A. Tudor. Analysis of the Rosenblatt process. ESAIM Probab. Statist. 12 230–257. Zbl1187.60028MR2374640

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.