From left modules to algebras over an operad: application to combinatorial Hopf algebras
- [1] Université Paris 13, CNRS, UMR 7539 LAGA, 99, Avenue Jean-Baptiste Clément, F-93430 Villetaneuse, France.
Annales mathématiques Blaise Pascal (2010)
- Volume: 17, Issue: 1, page 47-96
- ISSN: 1259-1734
Access Full Article
topAbstract
topHow to cite
topLivernet, Muriel. "From left modules to algebras over an operad: application to combinatorial Hopf algebras." Annales mathématiques Blaise Pascal 17.1 (2010): 47-96. <http://eudml.org/doc/116351>.
@article{Livernet2010,
abstract = {The purpose of this paper is two fold: we study the behaviour of the forgetful functor from $\mathbb\{S\}$-modules to graded vector spaces in the context of algebras over an operad and derive the construction of combinatorial Hopf algebras. As a byproduct we obtain freeness and cofreeness results for those Hopf algebras.Let $\mathcal\{O\}$ denote the forgetful functor from $\mathbb\{S\}$-modules to graded vector spaces. Left modules over an operad $\mathcal\{P\}$ are treated as $\mathcal\{P\}$-algebras in the category of $\mathbb\{S\}$-modules. We generalize the results obtained by Patras and Reutenauer in the associative case to any operad $\mathcal\{P\}$: the functor $\mathcal\{O\}$ sends $\mathcal\{P\}$-algebras to $\mathcal\{P\}$-algebras. If $\mathcal\{P\}$ is a Hopf operad the functor $\mathcal\{O\}$ sends Hopf $\mathcal\{P\}$-algebras to Hopf $\mathcal\{P\}$-algebras. If the operad $\mathcal\{P\}$ is regular one gets two different structures of Hopf $\mathcal\{P\}$-algebras in the category of graded vector spaces. We develop the notion of unital infinitesimal $\mathcal\{P\}$-bialgebras and prove freeness and cofreeness results for Hopf algebras built from Hopf operads. Finally, we prove that many combinatorial Hopf algebras arise from our theory, as it is the case for various Hopf algebras defined on the faces of the permutohedra and associahedra.},
affiliation = {Université Paris 13, CNRS, UMR 7539 LAGA, 99, Avenue Jean-Baptiste Clément, F-93430 Villetaneuse, France.},
author = {Livernet, Muriel},
journal = {Annales mathématiques Blaise Pascal},
keywords = {$\mathbb\{S\}$-module; operad; twisted bialgebra; free associative algebra; combinatorial Hopf algebra; -module},
language = {eng},
month = {1},
number = {1},
pages = {47-96},
publisher = {Annales mathématiques Blaise Pascal},
title = {From left modules to algebras over an operad: application to combinatorial Hopf algebras},
url = {http://eudml.org/doc/116351},
volume = {17},
year = {2010},
}
TY - JOUR
AU - Livernet, Muriel
TI - From left modules to algebras over an operad: application to combinatorial Hopf algebras
JO - Annales mathématiques Blaise Pascal
DA - 2010/1//
PB - Annales mathématiques Blaise Pascal
VL - 17
IS - 1
SP - 47
EP - 96
AB - The purpose of this paper is two fold: we study the behaviour of the forgetful functor from $\mathbb{S}$-modules to graded vector spaces in the context of algebras over an operad and derive the construction of combinatorial Hopf algebras. As a byproduct we obtain freeness and cofreeness results for those Hopf algebras.Let $\mathcal{O}$ denote the forgetful functor from $\mathbb{S}$-modules to graded vector spaces. Left modules over an operad $\mathcal{P}$ are treated as $\mathcal{P}$-algebras in the category of $\mathbb{S}$-modules. We generalize the results obtained by Patras and Reutenauer in the associative case to any operad $\mathcal{P}$: the functor $\mathcal{O}$ sends $\mathcal{P}$-algebras to $\mathcal{P}$-algebras. If $\mathcal{P}$ is a Hopf operad the functor $\mathcal{O}$ sends Hopf $\mathcal{P}$-algebras to Hopf $\mathcal{P}$-algebras. If the operad $\mathcal{P}$ is regular one gets two different structures of Hopf $\mathcal{P}$-algebras in the category of graded vector spaces. We develop the notion of unital infinitesimal $\mathcal{P}$-bialgebras and prove freeness and cofreeness results for Hopf algebras built from Hopf operads. Finally, we prove that many combinatorial Hopf algebras arise from our theory, as it is the case for various Hopf algebras defined on the faces of the permutohedra and associahedra.
LA - eng
KW - $\mathbb{S}$-module; operad; twisted bialgebra; free associative algebra; combinatorial Hopf algebra; -module
UR - http://eudml.org/doc/116351
ER -
References
top- Marcelo Aguiar, Frank Sottile, Structure of the Malvenuto-Reutenauer Hopf algebra of permutations, Adv. Math. 191 (2005), 225-275 Zbl1056.05139MR2103213
- Marcelo Aguiar, Frank Sottile, Structure of the Loday-Ronco Hopf algebra of trees, J. Algebra 295 (2006), 473-511 Zbl1099.16015MR2194965
- M. G. Barratt, Twisted Lie algebras, Geometric applications of homotopy theory (Proc. Conf., Evanston, Ill., 1977), II 658 (1978), 9-15, Springer, Berlin Zbl0393.55021MR513566
- Nantel Bergeron, Mike Zabrocki, The Hopf algebras of symmetric functions and quasi-symmetric functions in non-commutative variables are free and co-free, J. Algebra Appl. 8 (2009), 581-600 Zbl1188.16030MR2555523
- Frédéric Chapoton, Algèbres de Hopf des permutohèdres, associahèdres et hypercubes, Adv. Math. 150 (2000), 264-275 Zbl0958.16038MR1749253
- Frédéric Chapoton, Bigèbres différentielles graduées associées aux permutoèdres, associaèdres et hypercubes, Ann. Inst. Fourier (Grenoble) 50 (2000), 1127-1153 Zbl0963.16032MR1799740
- Frédéric Chapoton, Construction de certaines opérades et bigèbres associées aux polytopes de Stasheff et hypercubes, Trans. Amer. Math. Soc. 354 (2002), 63-74 (electronic) Zbl1035.18006MR1859025
- Frédéric Chapoton, Opérades différentielles graduées sur les simplexes et les permutoèdres, Bull. Soc. Math. France 130 (2002), 233-251 Zbl1044.18007MR1924542
- Gérard Duchamp, Florent Hivert, Jean-Yves Thibon, Noncommutative symmetric functions VI: free quasi-symmetric functions and related algebras, Internat. J. Algebra Comput. 12 (2002), 671-717 Zbl1027.05107MR1935570
- Loïc Foissy, Bidendriform bialgebras, trees, and free quasi-symmetric functions, J. Pure Appl. Algebra 209 (2007), 439-459 Zbl1123.16030MR2293319
- Benoit Fresse, Koszul duality of operads and homology of partition posets, Homotopy theory: relations with algebraic geometry, group cohomology, and algebraic -theory 346 (2004), 115-215, Amer. Math. Soc., Providence, RI Zbl1077.18007MR2066499
- Muriel Livernet, Frédéric Patras, Lie theory for Hopf operads, J. Algebra 319 (2008), 4899-4920 Zbl1149.18005MR2423811
- Jean-Louis Loday, Scindement d’associativité et algèbres de Hopf, Actes des Journées Mathématiques à la Mémoire de Jean Leray 9 (2004), 155-172, Soc. Math. France, Paris MR2145941
- Jean-Louis Loday, On the algebra of quasi-shuffles, Manuscripta Math. 123 (2007), 79-93 Zbl1126.16029MR2300061
- Jean-Louis Loday, María Ronco, Hopf algebra of the planar binary trees, Adv. Math. 139 (1998), 293-309 Zbl0926.16032MR1654173
- Jean-Louis Loday, María Ronco, Trialgebras and families of polytopes, Homotopy theory: relations with algebraic geometry, group cohomology, and algebraic -theory 346 (2004), 369-398, Amer. Math. Soc., Providence, RI Zbl1065.18007MR2066507
- Jean-Louis Loday, María Ronco, On the structure of cofree Hopf algebras, J. reine angew. Math. 592 (2006), 123-155 Zbl1096.16019MR2222732
- Claudia Malvenuto, Christophe Reutenauer, Duality between quasi-symmetric functions and the Solomon descent algebra, J. Algebra 177 (1995), 967-982 Zbl0838.05100MR1358493
- Jean-Christophe Novelli, Jean-Yves Thibon, Construction de trigèbres dendriformes, C. R. Math. Acad. Sci. Paris 342 (2006), 365-369 Zbl1101.17003MR2209212
- Patricia Palacios, María O. Ronco, Weak Bruhat order on the set of faces of the permutohedron and the associahedron, J. Algebra 299 (2006), 648-678 Zbl1110.16046MR2228332
- Frédéric Patras, Christophe Reutenauer, On descent algebras and twisted bialgebras, Mosc. Math. J. 4 (2004), 199-216, 311 Zbl1103.16026MR2074989
- Frédéric Patras, Manfred Schocker, Trees, set compositions and the twisted descent algebra, J. Algebraic Combin. 28 (2008), 3-23 Zbl1180.05032MR2420777
- Stéphane Poirier, Christophe Reutenauer, Algèbres de Hopf de tableaux, Ann. Sci. Math. Québec 19 (1995), 79-90 Zbl0835.16035MR1334836
- Christopher R. Stover, The equivalence of certain categories of twisted Lie and Hopf algebras over a commutative ring, J. Pure Appl. Algebra 86 (1993), 289-326 Zbl0793.16016MR1218107
- Andy Tonks, Relating the associahedron and the permutohedron, Operads: Proceedings of Renaissance Conferences (Hartford, CT/Luminy, 1995) 202 (1997), 33-36, Amer. Math. Soc., Providence, RI Zbl0873.51016MR1436915
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.