The unitary implementation of a measured quantum groupoid action

Michel Enock[1]

  • [1] Institut de Mathématiques de Jussieu, UMR 7586 du CNRS, Paris 6 & Paris 7 175, rue du Chevaleret, Plateau 7E, F-75013 Paris France

Annales mathématiques Blaise Pascal (2010)

  • Volume: 17, Issue: 2, page 233-302
  • ISSN: 1259-1734

Abstract

top
Mimicking the von Neumann version of Kustermans and Vaes’ locally compact quantum groups, Franck Lesieur had introduced a notion of measured quantum groupoid, in the setting of von Neumann algebras. In a former article, the author had introduced the notions of actions, crossed-product, dual actions of a measured quantum groupoid; a biduality theorem for actions has been proved. This article continues that program: we prove the existence of a standard implementation for an action, and a biduality theorem for weights. We generalize this way results which were proved, for locally compact quantum groups by S. Vaes, and for measured groupoids by T. Yamanouchi.

How to cite

top

Enock, Michel. "The unitary implementation of a measured quantum groupoid action." Annales mathématiques Blaise Pascal 17.2 (2010): 233-302. <http://eudml.org/doc/116353>.

@article{Enock2010,
abstract = {Mimicking the von Neumann version of Kustermans and Vaes’ locally compact quantum groups, Franck Lesieur had introduced a notion of measured quantum groupoid, in the setting of von Neumann algebras. In a former article, the author had introduced the notions of actions, crossed-product, dual actions of a measured quantum groupoid; a biduality theorem for actions has been proved. This article continues that program: we prove the existence of a standard implementation for an action, and a biduality theorem for weights. We generalize this way results which were proved, for locally compact quantum groups by S. Vaes, and for measured groupoids by T. Yamanouchi.},
affiliation = {Institut de Mathématiques de Jussieu, UMR 7586 du CNRS, Paris 6 & Paris 7 175, rue du Chevaleret, Plateau 7E, F-75013 Paris France},
author = {Enock, Michel},
journal = {Annales mathématiques Blaise Pascal},
keywords = {Measured quantum groupoids; actions; biduality theorems; measured quantum groupoids},
language = {eng},
month = {7},
number = {2},
pages = {233-302},
publisher = {Annales mathématiques Blaise Pascal},
title = {The unitary implementation of a measured quantum groupoid action},
url = {http://eudml.org/doc/116353},
volume = {17},
year = {2010},
}

TY - JOUR
AU - Enock, Michel
TI - The unitary implementation of a measured quantum groupoid action
JO - Annales mathématiques Blaise Pascal
DA - 2010/7//
PB - Annales mathématiques Blaise Pascal
VL - 17
IS - 2
SP - 233
EP - 302
AB - Mimicking the von Neumann version of Kustermans and Vaes’ locally compact quantum groups, Franck Lesieur had introduced a notion of measured quantum groupoid, in the setting of von Neumann algebras. In a former article, the author had introduced the notions of actions, crossed-product, dual actions of a measured quantum groupoid; a biduality theorem for actions has been proved. This article continues that program: we prove the existence of a standard implementation for an action, and a biduality theorem for weights. We generalize this way results which were proved, for locally compact quantum groups by S. Vaes, and for measured groupoids by T. Yamanouchi.
LA - eng
KW - Measured quantum groupoids; actions; biduality theorems; measured quantum groupoids
UR - http://eudml.org/doc/116353
ER -

References

top
  1. Saad Baaj, Georges Skandalis, Unitaires multiplicatifs et dualité pour les produits croisés de C * -algèbres, Ann. Sci. École Norm. Sup. (4) 26 (1993), 425-488 Zbl0804.46078MR1235438
  2. Saad Baaj, Georges Skandalis, Stefaan Vaes, Non-semi-regular quantum groups coming from number theory, Comm. Math. Phys. 235 (2003), 139-167 Zbl1029.46113MR1969723
  3. Saad Baaj, Stefaan Vaes, Double crossed products of locally compact quantum groups, J. Inst. Math. Jussieu 4 (2005), 135-173 Zbl1071.46040MR2115071
  4. Etienne Blanchard, Tensor products of C ( X ) -algebras over C ( X ) , Astérisque (1995), 81-92 Zbl0842.46049MR1372526
  5. Étienne Blanchard, Déformations de C * -algèbres de Hopf, Bull. Soc. Math. France 124 (1996), 141-215 Zbl0851.46040MR1395009
  6. Gabriella Böhm, Kornél Szlachányi, Weak C * -Hopf algebras: the coassociative symmetry of non-integral dimensions, Quantum groups and quantum spaces (Warsaw, 1995) 40 (1997), 9-19, Polish Acad. Sci., Warsaw Zbl0894.16018MR1481730
  7. Gabriella Bòhm, Korníl Szlachónyi, A coassociative C * -quantum group with nonintegral dimensions, Lett. Math. Phys. 38 (1996), 437-456 Zbl0872.16022MR1421688
  8. A. Connes, On the spatial theory of von Neumann algebras, J. Funct. Anal. 35 (1980), 153-164 Zbl0443.46042MR561983
  9. Alain Connes, Noncommutative geometry, (1994), Academic Press Inc., San Diego, CA Zbl0818.46076MR1303779
  10. Marie-Claude David, C * -groupoïdes quantiques et inclusions de facteurs: structure symétrique et autodualité, action sur le facteur hyperfini de type II 1 , J. Operator Theory 54 (2005), 27-68 Zbl1120.46048MR2168858
  11. Kenny De Commer, Monoidal equivalence for locally compact quantum groups, (2008) Zbl1265.46104
  12. Michel Enock, Produit croisé d’une algèbre de von Neumann par une algèbre de Kac, J. Functional Analysis 26 (1977), 16-47 Zbl0366.46053MR473854
  13. Michel Enock, Inclusions irréductibles de facteurs et unitaires multiplicatifs. II, J. Funct. Anal. 154 (1998), 67-109 Zbl0921.46065MR1616500
  14. Michel Enock, Inclusions of von Neumann algebras and quantum groupoïds. III, J. Funct. Anal. 223 (2005), 311-364 Zbl1088.46036MR2142344
  15. Michel Enock, Quantum groupoids of compact type, J. Inst. Math. Jussieu 4 (2005), 29-133 Zbl1071.46041MR2115070
  16. Michel Enock, Measured quantum groupoids in action, Mém. Soc. Math. Fr. (N.S.) (2008) Zbl1189.58002MR2541012
  17. Michel Enock, Measured Quantum Groupoids with a central basis, (2008) Zbl1189.58002
  18. Michel Enock, Outer actions of measured quantum groupoids, (2009) Zbl1217.46044
  19. Michel Enock, Ryszard Nest, Irreducible inclusions of factors, multiplicative unitaries, and Kac algebras, J. Funct. Anal. 137 (1996), 466-543 Zbl0847.22003MR1387518
  20. Michel Enock, Jean-Marie Schwartz, Produit croisé d’une algèbre de von Neumann par une algèbre de Kac. II, Publ. Res. Inst. Math. Sci. 16 (1980), 189-232 Zbl0441.46056MR574033
  21. Michel Enock, Jean-Marie Schwartz, Kac algebras and duality of locally compact groups, (1992), Springer-Verlag, Berlin Zbl0805.22003MR1215933
  22. Michel Enock, Jean-Michel Vallin, Inclusions of von Neumann algebras, and quantum groupoids, J. Funct. Anal. 172 (2000), 249-300 Zbl0974.46055MR1753177
  23. V. F. R. Jones, Index for subfactors, Invent. Math. 72 (1983), 1-25 Zbl0508.46040MR696688
  24. Johan Kustermans, Stefaan Vaes, Locally compact quantum groups, Ann. Sci. École Norm. Sup. (4) 33 (2000), 837-934 Zbl1034.46508MR1832993
  25. Johan Kustermans, Stefaan Vaes, Locally compact quantum groups in the von Neumann algebraic setting, Math. Scand. 92 (2003), 68-92 Zbl1034.46067MR1951446
  26. Franck Lesieur, Measured quantum groupoids, Mém. Soc. Math. Fr. (N.S.) (2007) Zbl1221.46003MR2474165
  27. T. Masuda, Y. Nakagami, S. L. Woronowicz, A C * -algebraic framework for quantum groups, Internat. J. Math. 14 (2003), 903-1001 Zbl1053.46050MR2020804
  28. Tetsuya Masuda, Yoshiomi Nakagami, A von Neumann algebra framework for the duality of the quantum groups, Publ. Res. Inst. Math. Sci. 30 (1994), 799-850 Zbl0839.46055MR1311393
  29. Dmitri Nikshych, Leonid Vainerman, Algebraic versions of a finite-dimensional quantum groupoid, Hopf algebras and quantum groups (Brussels, 1998) 209 (2000), 189-220, Dekker, New York Zbl1032.46537MR1763613
  30. Dmitri Nikshych, Leonid Vainerman, A characterization of depth 2 subfactors of II 1 factors, J. Funct. Anal. 171 (2000), 278-307 Zbl1010.46063MR1745634
  31. Dmitri Nikshych, Leonid Vainerman, Finite quantum groupoids and their applications, New directions in Hopf algebras 43 (2002), 211-262, Cambridge Univ. Press, Cambridge Zbl1026.17017MR1913440
  32. Jean-Luc Sauvageot, Sur le produit tensoriel relatif d’espaces de Hilbert, J. Operator Theory 9 (1983), 237-252 Zbl0517.46050MR703809
  33. Şerban Strătilă, Modular theory in operator algebras, (1981), Editura Academiei Republicii Socialiste România, Bucharest Zbl0504.46043MR696172
  34. Kornél Szlachányi, Weak Hopf algebras, Operator algebras and quantum field theory (Rome, 1996) (1997), 621-632, Int. Press, Cambridge, MA Zbl1098.16504MR1491146
  35. M. Takesaki, Theory of operator algebras. II, 125 (2003), Springer-Verlag, Berlin Zbl1059.46031MR1943006
  36. Stefaan Vaes, The unitary implementation of a locally compact quantum group action, J. Funct. Anal. 180 (2001), 426-480 Zbl1011.46058MR1814995
  37. Stefaan Vaes, Strictly outer actions of groups and quantum groups, J. Reine Angew. Math. 578 (2005), 147-184 Zbl1073.46047MR2113893
  38. Stefaan Vaes, Leonid Vainerman, Extensions of locally compact quantum groups and the bicrossed product construction, Adv. Math. 175 (2003), 1-101 Zbl1034.46068MR1970242
  39. Jean-Michel Vallin, Bimodules de Hopf et poids opératoriels de Haar, J. Operator Theory 35 (1996), 39-65 Zbl0849.22002MR1389642
  40. Jean-Michel Vallin, Unitaire pseudo-multiplicatif associé à un groupoïde. Applications à la moyennabilité, J. Operator Theory 44 (2000), 347-368 Zbl0986.22002MR1794823
  41. Jean-Michel Vallin, Groupoïdes quantiques finis, J. Algebra 239 (2001), 215-261 Zbl1003.46040MR1827882
  42. Jean-Michel Vallin, Multiplicative partial isometries and finite quantum groupoids, Locally compact quantum groups and groupoids (Strasbourg, 2002) 2 (2003), 189-227, de Gruyter, Berlin Zbl1171.47306MR1976946
  43. Jean-Michel Vallin, Measured quantum groupoids associated with matched pairs of locally compact groupoids, (2009) Zbl06493252
  44. S. L. Woronowicz, Tannaka-Kreĭn duality for compact matrix pseudogroups. Twisted SU ( N ) groups, Invent. Math. 93 (1988), 35-76 Zbl0664.58044MR943923
  45. S. L. Woronowicz, From multiplicative unitaries to quantum groups, Internat. J. Math. 7 (1996), 127-149 Zbl0876.46044MR1369908
  46. S. L. Woronowicz, Compact quantum groups, Symétries quantiques (Les Houches, 1995) (1998), 845-884, North-Holland, Amsterdam Zbl0997.46045MR1616348
  47. Takehiko Yamanouchi, Crossed products by groupoid actions and their smooth flows of weights, Publ. Res. Inst. Math. Sci. 28 (1992), 535-578 Zbl0824.46080MR1191875
  48. Takehiko Yamanouchi, Dual weights on crossed products by groupoid actions, Publ. Res. Inst. Math. Sci. 28 (1992), 653-678 Zbl0824.46081MR1191881
  49. Takehiko Yamanouchi, Duality for actions and coactions of measured groupoids on von Neumann algebras, Mem. Amer. Math. Soc. 101 (1993) Zbl0822.46070MR1127115
  50. Takehiko Yamanouchi, Canonical extension of actions of locally compact quantum groups, J. Funct. Anal. 201 (2003), 522-560 Zbl1034.46070MR1986698
  51. Takehiko Yamanouchi, Takesaki duality for weights on locally compact quantum group covariant systems, J. Operator Theory 50 (2003), 53-66 Zbl1036.46056MR2015018

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.