The unitary implementation of a measured quantum groupoid action
Michel Enock[1]
- [1] Institut de Mathématiques de Jussieu, UMR 7586 du CNRS, Paris 6 & Paris 7 175, rue du Chevaleret, Plateau 7E, F-75013 Paris France
Annales mathématiques Blaise Pascal (2010)
- Volume: 17, Issue: 2, page 233-302
- ISSN: 1259-1734
Access Full Article
topAbstract
topHow to cite
topEnock, Michel. "The unitary implementation of a measured quantum groupoid action." Annales mathématiques Blaise Pascal 17.2 (2010): 233-302. <http://eudml.org/doc/116353>.
@article{Enock2010,
abstract = {Mimicking the von Neumann version of Kustermans and Vaes’ locally compact quantum groups, Franck Lesieur had introduced a notion of measured quantum groupoid, in the setting of von Neumann algebras. In a former article, the author had introduced the notions of actions, crossed-product, dual actions of a measured quantum groupoid; a biduality theorem for actions has been proved. This article continues that program: we prove the existence of a standard implementation for an action, and a biduality theorem for weights. We generalize this way results which were proved, for locally compact quantum groups by S. Vaes, and for measured groupoids by T. Yamanouchi.},
affiliation = {Institut de Mathématiques de Jussieu, UMR 7586 du CNRS, Paris 6 & Paris 7 175, rue du Chevaleret, Plateau 7E, F-75013 Paris France},
author = {Enock, Michel},
journal = {Annales mathématiques Blaise Pascal},
keywords = {Measured quantum groupoids; actions; biduality theorems; measured quantum groupoids},
language = {eng},
month = {7},
number = {2},
pages = {233-302},
publisher = {Annales mathématiques Blaise Pascal},
title = {The unitary implementation of a measured quantum groupoid action},
url = {http://eudml.org/doc/116353},
volume = {17},
year = {2010},
}
TY - JOUR
AU - Enock, Michel
TI - The unitary implementation of a measured quantum groupoid action
JO - Annales mathématiques Blaise Pascal
DA - 2010/7//
PB - Annales mathématiques Blaise Pascal
VL - 17
IS - 2
SP - 233
EP - 302
AB - Mimicking the von Neumann version of Kustermans and Vaes’ locally compact quantum groups, Franck Lesieur had introduced a notion of measured quantum groupoid, in the setting of von Neumann algebras. In a former article, the author had introduced the notions of actions, crossed-product, dual actions of a measured quantum groupoid; a biduality theorem for actions has been proved. This article continues that program: we prove the existence of a standard implementation for an action, and a biduality theorem for weights. We generalize this way results which were proved, for locally compact quantum groups by S. Vaes, and for measured groupoids by T. Yamanouchi.
LA - eng
KW - Measured quantum groupoids; actions; biduality theorems; measured quantum groupoids
UR - http://eudml.org/doc/116353
ER -
References
top- Saad Baaj, Georges Skandalis, Unitaires multiplicatifs et dualité pour les produits croisés de -algèbres, Ann. Sci. École Norm. Sup. (4) 26 (1993), 425-488 Zbl0804.46078MR1235438
- Saad Baaj, Georges Skandalis, Stefaan Vaes, Non-semi-regular quantum groups coming from number theory, Comm. Math. Phys. 235 (2003), 139-167 Zbl1029.46113MR1969723
- Saad Baaj, Stefaan Vaes, Double crossed products of locally compact quantum groups, J. Inst. Math. Jussieu 4 (2005), 135-173 Zbl1071.46040MR2115071
- Etienne Blanchard, Tensor products of -algebras over , Astérisque (1995), 81-92 Zbl0842.46049MR1372526
- Étienne Blanchard, Déformations de -algèbres de Hopf, Bull. Soc. Math. France 124 (1996), 141-215 Zbl0851.46040MR1395009
- Gabriella Böhm, Kornél Szlachányi, Weak -Hopf algebras: the coassociative symmetry of non-integral dimensions, Quantum groups and quantum spaces (Warsaw, 1995) 40 (1997), 9-19, Polish Acad. Sci., Warsaw Zbl0894.16018MR1481730
- Gabriella Bòhm, Korníl Szlachónyi, A coassociative -quantum group with nonintegral dimensions, Lett. Math. Phys. 38 (1996), 437-456 Zbl0872.16022MR1421688
- A. Connes, On the spatial theory of von Neumann algebras, J. Funct. Anal. 35 (1980), 153-164 Zbl0443.46042MR561983
- Alain Connes, Noncommutative geometry, (1994), Academic Press Inc., San Diego, CA Zbl0818.46076MR1303779
- Marie-Claude David, -groupoïdes quantiques et inclusions de facteurs: structure symétrique et autodualité, action sur le facteur hyperfini de type , J. Operator Theory 54 (2005), 27-68 Zbl1120.46048MR2168858
- Kenny De Commer, Monoidal equivalence for locally compact quantum groups, (2008) Zbl1265.46104
- Michel Enock, Produit croisé d’une algèbre de von Neumann par une algèbre de Kac, J. Functional Analysis 26 (1977), 16-47 Zbl0366.46053MR473854
- Michel Enock, Inclusions irréductibles de facteurs et unitaires multiplicatifs. II, J. Funct. Anal. 154 (1998), 67-109 Zbl0921.46065MR1616500
- Michel Enock, Inclusions of von Neumann algebras and quantum groupoïds. III, J. Funct. Anal. 223 (2005), 311-364 Zbl1088.46036MR2142344
- Michel Enock, Quantum groupoids of compact type, J. Inst. Math. Jussieu 4 (2005), 29-133 Zbl1071.46041MR2115070
- Michel Enock, Measured quantum groupoids in action, Mém. Soc. Math. Fr. (N.S.) (2008) Zbl1189.58002MR2541012
- Michel Enock, Measured Quantum Groupoids with a central basis, (2008) Zbl1189.58002
- Michel Enock, Outer actions of measured quantum groupoids, (2009) Zbl1217.46044
- Michel Enock, Ryszard Nest, Irreducible inclusions of factors, multiplicative unitaries, and Kac algebras, J. Funct. Anal. 137 (1996), 466-543 Zbl0847.22003MR1387518
- Michel Enock, Jean-Marie Schwartz, Produit croisé d’une algèbre de von Neumann par une algèbre de Kac. II, Publ. Res. Inst. Math. Sci. 16 (1980), 189-232 Zbl0441.46056MR574033
- Michel Enock, Jean-Marie Schwartz, Kac algebras and duality of locally compact groups, (1992), Springer-Verlag, Berlin Zbl0805.22003MR1215933
- Michel Enock, Jean-Michel Vallin, Inclusions of von Neumann algebras, and quantum groupoids, J. Funct. Anal. 172 (2000), 249-300 Zbl0974.46055MR1753177
- V. F. R. Jones, Index for subfactors, Invent. Math. 72 (1983), 1-25 Zbl0508.46040MR696688
- Johan Kustermans, Stefaan Vaes, Locally compact quantum groups, Ann. Sci. École Norm. Sup. (4) 33 (2000), 837-934 Zbl1034.46508MR1832993
- Johan Kustermans, Stefaan Vaes, Locally compact quantum groups in the von Neumann algebraic setting, Math. Scand. 92 (2003), 68-92 Zbl1034.46067MR1951446
- Franck Lesieur, Measured quantum groupoids, Mém. Soc. Math. Fr. (N.S.) (2007) Zbl1221.46003MR2474165
- T. Masuda, Y. Nakagami, S. L. Woronowicz, A -algebraic framework for quantum groups, Internat. J. Math. 14 (2003), 903-1001 Zbl1053.46050MR2020804
- Tetsuya Masuda, Yoshiomi Nakagami, A von Neumann algebra framework for the duality of the quantum groups, Publ. Res. Inst. Math. Sci. 30 (1994), 799-850 Zbl0839.46055MR1311393
- Dmitri Nikshych, Leonid Vainerman, Algebraic versions of a finite-dimensional quantum groupoid, Hopf algebras and quantum groups (Brussels, 1998) 209 (2000), 189-220, Dekker, New York Zbl1032.46537MR1763613
- Dmitri Nikshych, Leonid Vainerman, A characterization of depth 2 subfactors of factors, J. Funct. Anal. 171 (2000), 278-307 Zbl1010.46063MR1745634
- Dmitri Nikshych, Leonid Vainerman, Finite quantum groupoids and their applications, New directions in Hopf algebras 43 (2002), 211-262, Cambridge Univ. Press, Cambridge Zbl1026.17017MR1913440
- Jean-Luc Sauvageot, Sur le produit tensoriel relatif d’espaces de Hilbert, J. Operator Theory 9 (1983), 237-252 Zbl0517.46050MR703809
- Şerban Strătilă, Modular theory in operator algebras, (1981), Editura Academiei Republicii Socialiste România, Bucharest Zbl0504.46043MR696172
- Kornél Szlachányi, Weak Hopf algebras, Operator algebras and quantum field theory (Rome, 1996) (1997), 621-632, Int. Press, Cambridge, MA Zbl1098.16504MR1491146
- M. Takesaki, Theory of operator algebras. II, 125 (2003), Springer-Verlag, Berlin Zbl1059.46031MR1943006
- Stefaan Vaes, The unitary implementation of a locally compact quantum group action, J. Funct. Anal. 180 (2001), 426-480 Zbl1011.46058MR1814995
- Stefaan Vaes, Strictly outer actions of groups and quantum groups, J. Reine Angew. Math. 578 (2005), 147-184 Zbl1073.46047MR2113893
- Stefaan Vaes, Leonid Vainerman, Extensions of locally compact quantum groups and the bicrossed product construction, Adv. Math. 175 (2003), 1-101 Zbl1034.46068MR1970242
- Jean-Michel Vallin, Bimodules de Hopf et poids opératoriels de Haar, J. Operator Theory 35 (1996), 39-65 Zbl0849.22002MR1389642
- Jean-Michel Vallin, Unitaire pseudo-multiplicatif associé à un groupoïde. Applications à la moyennabilité, J. Operator Theory 44 (2000), 347-368 Zbl0986.22002MR1794823
- Jean-Michel Vallin, Groupoïdes quantiques finis, J. Algebra 239 (2001), 215-261 Zbl1003.46040MR1827882
- Jean-Michel Vallin, Multiplicative partial isometries and finite quantum groupoids, Locally compact quantum groups and groupoids (Strasbourg, 2002) 2 (2003), 189-227, de Gruyter, Berlin Zbl1171.47306MR1976946
- Jean-Michel Vallin, Measured quantum groupoids associated with matched pairs of locally compact groupoids, (2009) Zbl06493252
- S. L. Woronowicz, Tannaka-Kreĭn duality for compact matrix pseudogroups. Twisted groups, Invent. Math. 93 (1988), 35-76 Zbl0664.58044MR943923
- S. L. Woronowicz, From multiplicative unitaries to quantum groups, Internat. J. Math. 7 (1996), 127-149 Zbl0876.46044MR1369908
- S. L. Woronowicz, Compact quantum groups, Symétries quantiques (Les Houches, 1995) (1998), 845-884, North-Holland, Amsterdam Zbl0997.46045MR1616348
- Takehiko Yamanouchi, Crossed products by groupoid actions and their smooth flows of weights, Publ. Res. Inst. Math. Sci. 28 (1992), 535-578 Zbl0824.46080MR1191875
- Takehiko Yamanouchi, Dual weights on crossed products by groupoid actions, Publ. Res. Inst. Math. Sci. 28 (1992), 653-678 Zbl0824.46081MR1191881
- Takehiko Yamanouchi, Duality for actions and coactions of measured groupoids on von Neumann algebras, Mem. Amer. Math. Soc. 101 (1993) Zbl0822.46070MR1127115
- Takehiko Yamanouchi, Canonical extension of actions of locally compact quantum groups, J. Funct. Anal. 201 (2003), 522-560 Zbl1034.46070MR1986698
- Takehiko Yamanouchi, Takesaki duality for weights on locally compact quantum group covariant systems, J. Operator Theory 50 (2003), 53-66 Zbl1036.46056MR2015018
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.