On the local time of sub-fractional Brownian motion

Ibrahima Mendy[1]

  • [1] Université de Ziguinchor UFR Sciences et Technologies Département de Mathématiques BP 523 Ziguinchor Senegal.

Annales mathématiques Blaise Pascal (2010)

  • Volume: 17, Issue: 2, page 357-374
  • ISSN: 1259-1734

Abstract

top
S H = { S t H , t 0 } be a sub-fractional Brownian motion with H ( 0 , 1 ) . We establish the existence, the joint continuity and the Hölder regularity of the local time L H of S H . We will also give Chung’s form of the law of iterated logarithm for S H . This results are obtained with the decomposition of the sub-fractional Brownian motion into the sum of fractional Brownian motion plus a stochastic process with absolutely continuous trajectories. This decomposition is given by Ruiz de Chavez and Tudor [10].

How to cite

top

Mendy, Ibrahima. "On the local time of sub-fractional Brownian motion." Annales mathématiques Blaise Pascal 17.2 (2010): 357-374. <http://eudml.org/doc/116357>.

@article{Mendy2010,
abstract = {$S^\{H\}=\lbrace S^\{H\}_\{t\}, t\ge 0\rbrace $ be a sub-fractional Brownian motion with $H\in (0,1)$. We establish the existence, the joint continuity and the Hölder regularity of the local time $L^\{H\}$ of $S^\{H\}$. We will also give Chung’s form of the law of iterated logarithm for $S^\{H\}$. This results are obtained with the decomposition of the sub-fractional Brownian motion into the sum of fractional Brownian motion plus a stochastic process with absolutely continuous trajectories. This decomposition is given by Ruiz de Chavez and Tudor [10].},
affiliation = {Université de Ziguinchor UFR Sciences et Technologies Département de Mathématiques BP 523 Ziguinchor Senegal.},
author = {Mendy, Ibrahima},
journal = {Annales mathématiques Blaise Pascal},
keywords = {Sub-fractional Brownian motion; local time; local nondeterminism; Chung’s type law of iterated logarithm; sub-fractional Brownian motion; Chung's type law of iterated logarithm},
language = {eng},
month = {7},
number = {2},
pages = {357-374},
publisher = {Annales mathématiques Blaise Pascal},
title = {On the local time of sub-fractional Brownian motion},
url = {http://eudml.org/doc/116357},
volume = {17},
year = {2010},
}

TY - JOUR
AU - Mendy, Ibrahima
TI - On the local time of sub-fractional Brownian motion
JO - Annales mathématiques Blaise Pascal
DA - 2010/7//
PB - Annales mathématiques Blaise Pascal
VL - 17
IS - 2
SP - 357
EP - 374
AB - $S^{H}=\lbrace S^{H}_{t}, t\ge 0\rbrace $ be a sub-fractional Brownian motion with $H\in (0,1)$. We establish the existence, the joint continuity and the Hölder regularity of the local time $L^{H}$ of $S^{H}$. We will also give Chung’s form of the law of iterated logarithm for $S^{H}$. This results are obtained with the decomposition of the sub-fractional Brownian motion into the sum of fractional Brownian motion plus a stochastic process with absolutely continuous trajectories. This decomposition is given by Ruiz de Chavez and Tudor [10].
LA - eng
KW - Sub-fractional Brownian motion; local time; local nondeterminism; Chung’s type law of iterated logarithm; sub-fractional Brownian motion; Chung's type law of iterated logarithm
UR - http://eudml.org/doc/116357
ER -

References

top
  1. Robert J. Adler, The geometry of random fields, (1981), John Wiley & Sons Ltd., Chichester Zbl0478.60059MR611857
  2. Robert J. Adler, An introduction to continuity, extrema, and related topics for general Gaussian processes, (1990), Institute of Mathematical Statistics, Hayward, CA Zbl0747.60039MR1088478
  3. D. Baraka, T. Mountford, Y. Xiao, Hölder properties of local times for fractional Brownian motions, Metrika 69 (2009), 125-152 Zbl06493840MR2481918
  4. S. M. Berman, Local times and sample function properties of stationary Gaussian processes, Trans. Amer. Math. Soc. 137 (1969), 277-299 Zbl0184.40801MR239652
  5. S. M. Berman, Gaussian processes with stationary increments: Local times and sample function properties, Ann. Math. Statist. 41 (1970), 1260-1272 Zbl0204.50501MR272035
  6. S. M. Berman, Local nondeterminism and local times of Gaussian processes, Indiana University Mathematical Journal 23 (1973), 69-94 Zbl0264.60024MR317397
  7. Simeon M. Berman, Gaussian sample functions: Uniform dimension and Hölder conditions nowhere, Nagoya Math. J. 46 (1972), 63-86 Zbl0246.60038MR307320
  8. T. L. G. Bojdecki, L. G. Gorostiza, A. Talarczyk, Some extensions of fractional Brownian motion and sub-fractional Brownian motion related to particule systems, Electron. Comm. Probab. 32 (2007), 161-172 Zbl1128.60025MR2318163
  9. B. Boufoussi, M. Dozzi, R. Guerbaz, On the local time of the multifractional brownian motion, Stochastics and stochastic repports 78 (2006), 33-49 Zbl1124.60061MR2219711
  10. J. Ruiz de Chávez, C. Tudor, A decomposition of sub-fractional Brownian motion, Math. Rep. (Bucur.) 11(61) (2009), 67-74 Zbl1199.60133MR2506510
  11. Miklós Csörgő, Zheng Yan Lin, Qi Man Shao, On moduli of continuity for local times of Gaussian processes, Stochastic Process. Appl. 58 (1995), 1-21 Zbl0834.60088MR1341551
  12. W. Ehm, Sample function properties of multi-parameter stable processes, Z. Wahrsch. Verw. Gebiete 56 (1981), 195-228 Zbl0471.60046MR618272
  13. D. Geman, J. Horowitz, Occupation densities, Annales of probability 8 (1980), 1-67 Zbl0499.60081MR556414
  14. R. Guerbaz, Local time and related sample paths of filtered white noises, Annales Mathematiques Blaise Pascal 14 (2007), 77-91 Zbl1144.60029MR2298805
  15. N. Kôno, Hölder conditions for the local times of certain gaussian processes with stationary increments, Proceeding of the Japan Academy 53 (1977), 84-87 Zbl0437.60057MR494453
  16. N. Kôno, N. R. Shieh, Local times and related sample path proprieties of certain selfsimilar processes, J. Math. Kyoto Univ. 33 (1993), 51-64 Zbl0776.60054MR1203890
  17. P. Lei, D. Nualart, A decomposition of the bifractional Brownian motion and some applications, Statist. Probab. Lett 779 (2009), 619-624 Zbl1157.60313MR2499385
  18. W. V. Li, Q.-M. Shao, Gaussian processes: inequalities, small ball probabilities and applications, Stochastic processes: theory and methods 19 (2001), 533-597, North-Holland, Amsterdam Zbl0987.60053MR1861734
  19. D. Monrad, H. Rootzén, Small values of Gaussian processes and functional laws of the iterated logarithm, Probab. Th. Rel. Fields 101 (1995), 173-192 Zbl0821.60043MR1318191
  20. L. Pitt, Local times for gaussian vector fields, Indiana Univ. Math. J. 27 (1978), 204-237 Zbl0382.60055MR471055
  21. C. Tudor, Some propreties of sub-fractional Brownian motion, Stochastics. 79 (2007), 431-448 Zbl1124.60038MR2356519
  22. C. Tudor, Inner product spaces of integrands associated to sub-fractional Brownian motion, Statist. Probab. Lett. 78 (2008), 2201-2209. Zbl1283.60082MR2458028
  23. Y. Xiao, Hölder conditions for the local times and the Hausdorff measure of the level sets of Gaussian random fields, Probab. Th. Rel. fields 109 (1997), 129-157 Zbl0882.60035MR1469923

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.