On the local time of sub-fractional Brownian motion
- [1] Université de Ziguinchor UFR Sciences et Technologies Département de Mathématiques BP 523 Ziguinchor Senegal.
Annales mathématiques Blaise Pascal (2010)
- Volume: 17, Issue: 2, page 357-374
- ISSN: 1259-1734
Access Full Article
topAbstract
topHow to cite
topMendy, Ibrahima. "On the local time of sub-fractional Brownian motion." Annales mathématiques Blaise Pascal 17.2 (2010): 357-374. <http://eudml.org/doc/116357>.
@article{Mendy2010,
abstract = {$S^\{H\}=\lbrace S^\{H\}_\{t\}, t\ge 0\rbrace $ be a sub-fractional Brownian motion with $H\in (0,1)$. We establish the existence, the joint continuity and the Hölder regularity of the local time $L^\{H\}$ of $S^\{H\}$. We will also give Chung’s form of the law of iterated logarithm for $S^\{H\}$. This results are obtained with the decomposition of the sub-fractional Brownian motion into the sum of fractional Brownian motion plus a stochastic process with absolutely continuous trajectories. This decomposition is given by Ruiz de Chavez and Tudor [10].},
affiliation = {Université de Ziguinchor UFR Sciences et Technologies Département de Mathématiques BP 523 Ziguinchor Senegal.},
author = {Mendy, Ibrahima},
journal = {Annales mathématiques Blaise Pascal},
keywords = {Sub-fractional Brownian motion; local time; local nondeterminism; Chung’s type law of iterated logarithm; sub-fractional Brownian motion; Chung's type law of iterated logarithm},
language = {eng},
month = {7},
number = {2},
pages = {357-374},
publisher = {Annales mathématiques Blaise Pascal},
title = {On the local time of sub-fractional Brownian motion},
url = {http://eudml.org/doc/116357},
volume = {17},
year = {2010},
}
TY - JOUR
AU - Mendy, Ibrahima
TI - On the local time of sub-fractional Brownian motion
JO - Annales mathématiques Blaise Pascal
DA - 2010/7//
PB - Annales mathématiques Blaise Pascal
VL - 17
IS - 2
SP - 357
EP - 374
AB - $S^{H}=\lbrace S^{H}_{t}, t\ge 0\rbrace $ be a sub-fractional Brownian motion with $H\in (0,1)$. We establish the existence, the joint continuity and the Hölder regularity of the local time $L^{H}$ of $S^{H}$. We will also give Chung’s form of the law of iterated logarithm for $S^{H}$. This results are obtained with the decomposition of the sub-fractional Brownian motion into the sum of fractional Brownian motion plus a stochastic process with absolutely continuous trajectories. This decomposition is given by Ruiz de Chavez and Tudor [10].
LA - eng
KW - Sub-fractional Brownian motion; local time; local nondeterminism; Chung’s type law of iterated logarithm; sub-fractional Brownian motion; Chung's type law of iterated logarithm
UR - http://eudml.org/doc/116357
ER -
References
top- Robert J. Adler, The geometry of random fields, (1981), John Wiley & Sons Ltd., Chichester Zbl0478.60059MR611857
- Robert J. Adler, An introduction to continuity, extrema, and related topics for general Gaussian processes, (1990), Institute of Mathematical Statistics, Hayward, CA Zbl0747.60039MR1088478
- D. Baraka, T. Mountford, Y. Xiao, Hölder properties of local times for fractional Brownian motions, Metrika 69 (2009), 125-152 Zbl06493840MR2481918
- S. M. Berman, Local times and sample function properties of stationary Gaussian processes, Trans. Amer. Math. Soc. 137 (1969), 277-299 Zbl0184.40801MR239652
- S. M. Berman, Gaussian processes with stationary increments: Local times and sample function properties, Ann. Math. Statist. 41 (1970), 1260-1272 Zbl0204.50501MR272035
- S. M. Berman, Local nondeterminism and local times of Gaussian processes, Indiana University Mathematical Journal 23 (1973), 69-94 Zbl0264.60024MR317397
- Simeon M. Berman, Gaussian sample functions: Uniform dimension and Hölder conditions nowhere, Nagoya Math. J. 46 (1972), 63-86 Zbl0246.60038MR307320
- T. L. G. Bojdecki, L. G. Gorostiza, A. Talarczyk, Some extensions of fractional Brownian motion and sub-fractional Brownian motion related to particule systems, Electron. Comm. Probab. 32 (2007), 161-172 Zbl1128.60025MR2318163
- B. Boufoussi, M. Dozzi, R. Guerbaz, On the local time of the multifractional brownian motion, Stochastics and stochastic repports 78 (2006), 33-49 Zbl1124.60061MR2219711
- J. Ruiz de Chávez, C. Tudor, A decomposition of sub-fractional Brownian motion, Math. Rep. (Bucur.) 11(61) (2009), 67-74 Zbl1199.60133MR2506510
- Miklós Csörgő, Zheng Yan Lin, Qi Man Shao, On moduli of continuity for local times of Gaussian processes, Stochastic Process. Appl. 58 (1995), 1-21 Zbl0834.60088MR1341551
- W. Ehm, Sample function properties of multi-parameter stable processes, Z. Wahrsch. Verw. Gebiete 56 (1981), 195-228 Zbl0471.60046MR618272
- D. Geman, J. Horowitz, Occupation densities, Annales of probability 8 (1980), 1-67 Zbl0499.60081MR556414
- R. Guerbaz, Local time and related sample paths of filtered white noises, Annales Mathematiques Blaise Pascal 14 (2007), 77-91 Zbl1144.60029MR2298805
- N. Kôno, Hölder conditions for the local times of certain gaussian processes with stationary increments, Proceeding of the Japan Academy 53 (1977), 84-87 Zbl0437.60057MR494453
- N. Kôno, N. R. Shieh, Local times and related sample path proprieties of certain selfsimilar processes, J. Math. Kyoto Univ. 33 (1993), 51-64 Zbl0776.60054MR1203890
- P. Lei, D. Nualart, A decomposition of the bifractional Brownian motion and some applications, Statist. Probab. Lett 779 (2009), 619-624 Zbl1157.60313MR2499385
- W. V. Li, Q.-M. Shao, Gaussian processes: inequalities, small ball probabilities and applications, Stochastic processes: theory and methods 19 (2001), 533-597, North-Holland, Amsterdam Zbl0987.60053MR1861734
- D. Monrad, H. Rootzén, Small values of Gaussian processes and functional laws of the iterated logarithm, Probab. Th. Rel. Fields 101 (1995), 173-192 Zbl0821.60043MR1318191
- L. Pitt, Local times for gaussian vector fields, Indiana Univ. Math. J. 27 (1978), 204-237 Zbl0382.60055MR471055
- C. Tudor, Some propreties of sub-fractional Brownian motion, Stochastics. 79 (2007), 431-448 Zbl1124.60038MR2356519
- C. Tudor, Inner product spaces of integrands associated to sub-fractional Brownian motion, Statist. Probab. Lett. 78 (2008), 2201-2209. Zbl1283.60082MR2458028
- Y. Xiao, Hölder conditions for the local times and the Hausdorff measure of the level sets of Gaussian random fields, Probab. Th. Rel. fields 109 (1997), 129-157 Zbl0882.60035MR1469923
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.