Uniqueness properties for spherical varieties

Ivan Losev[1]

  • [1] MIT, Department of Mathematics, 77 Massachusetts Avenue, Cambridge MA 02139, USA

Les cours du CIRM (2010)

  • Volume: 1, Issue: 1, page 113-120
  • ISSN: 2108-7164

Abstract

top
The goal of these lectures is to explain speaker’s results on uniqueness properties of spherical varieties. By a uniqueness property we mean the following. Consider some special class of spherical varieties. Define some combinatorial invariants for spherical varieties from this class. The problem is to determine whether this set of invariants specifies a spherical variety in this class uniquely (up to an isomorphism). We are interested in three classes: smooth affine varieties, general affine varieties, and homogeneous spaces.

How to cite

top

Losev, Ivan. "Uniqueness properties for spherical varieties." Les cours du CIRM 1.1 (2010): 113-120. <http://eudml.org/doc/116361>.

@article{Losev2010,
abstract = {The goal of these lectures is to explain speaker’s results on uniqueness properties of spherical varieties. By a uniqueness property we mean the following. Consider some special class of spherical varieties. Define some combinatorial invariants for spherical varieties from this class. The problem is to determine whether this set of invariants specifies a spherical variety in this class uniquely (up to an isomorphism). We are interested in three classes: smooth affine varieties, general affine varieties, and homogeneous spaces.},
affiliation = {MIT, Department of Mathematics, 77 Massachusetts Avenue, Cambridge MA 02139, USA},
author = {Losev, Ivan},
journal = {Les cours du CIRM},
keywords = {Reductive groups; spherical varieties; combinatorial invariants},
language = {eng},
number = {1},
pages = {113-120},
publisher = {CIRM},
title = {Uniqueness properties for spherical varieties},
url = {http://eudml.org/doc/116361},
volume = {1},
year = {2010},
}

TY - JOUR
AU - Losev, Ivan
TI - Uniqueness properties for spherical varieties
JO - Les cours du CIRM
PY - 2010
PB - CIRM
VL - 1
IS - 1
SP - 113
EP - 120
AB - The goal of these lectures is to explain speaker’s results on uniqueness properties of spherical varieties. By a uniqueness property we mean the following. Consider some special class of spherical varieties. Define some combinatorial invariants for spherical varieties from this class. The problem is to determine whether this set of invariants specifies a spherical variety in this class uniquely (up to an isomorphism). We are interested in three classes: smooth affine varieties, general affine varieties, and homogeneous spaces.
LA - eng
KW - Reductive groups; spherical varieties; combinatorial invariants
UR - http://eudml.org/doc/116361
ER -

References

top
  1. V. Alexeev, M. Brion. Moduli of affine schemes with reductive group action. J. Algebraic Geom. 14(2005), 83-117. Zbl1081.14005MR2092127
  2. M. Brion. Classification des espaces homogènes sphériques. Compositio Math. 63(1987), 189-208. Zbl0642.14011MR906369
  3. M. Brion. Vers une généralisation des espaces symmétriques. J. Algebra, 134(1990), 115-143. Zbl0729.14038MR1068418
  4. T. Delzant. Classification des actions hamiltoniennes complètement intégrables de rang deux. Ann. Global. Anal. Geom. 8(1990), 87-112. Zbl0711.58017MR1075241
  5. V. Guillemin, Sh. Sternberg. Symplectic techniques in physics. Cambridge University Press, 1984. Zbl0576.58012MR770935
  6. F. Knop. The Luna-Vust theory of spherical embeddings. Proceedings of the Hydebarad conference on algebraic groups. Madras: Manoj Prokashan 1991. Available at: http://www.mi.uni-erlangen.de/ knop/papers/LV.html Zbl0812.20023MR1131314
  7. F. Knop. Über Bewertungen, welche unter einer reductiven Gruppe invariant sind. Math. Ann., 295(1993), p. 333-363. Zbl0789.14040MR1202396
  8. F. Knop. The asymptotic behaviour of invariant collective motion. Invent. Math. 1994. V.114. p. 309-328. Zbl0802.58024MR1253195
  9. F. Knop. Automorphisms, root systems and compactifications. J. Amer. Math. Soc. 9(1996), n.1, p. 153-174. Zbl0862.14034MR1311823
  10. M. Krämer. Sphärische Untergruppen in kompakten zusammenhängenden Liegruppen. Compos. Math. 38 (1979), 129-153. Zbl0402.22006MR528837
  11. I.V. Losev. Proof of the Knop conjecture. Preprint(2006) arXiv:math.AG/0612561v5, 20 pages. To appear in Ann. Inst. Fourier, 59(2009), n.3. Zbl1191.14075MR2543664
  12. I.V. Losev. Uniqueness property for spherical homogeneous spaces. Preprint (2007), arXiv:math/0703543. Duke Math. J, 147(2009), n.2, 315-343. Zbl1175.14035MR2495078
  13. I.V. Losev. Demazure embeddings are smooth. Preprint (2007), arXiv:math.AG/0704.3698. International Mathematics Research Notices 2009; doi: 10.1093/imrn/rnp027, 9 pages. Zbl1183.14068MR2520767
  14. D. Luna. Grosses cellules pour les variétés sphériques. Austr. Math. Soc. Lect. Ser., v.9, 267-280. Cambridge University Press, Cambridge, 1997. Zbl0902.14037MR1635686
  15. D. Luna. Variétés sphériques de type A. IHES Publ. Math., 94(2001), 161-226. Zbl1085.14039MR1896179
  16. D. Luna. Sur le plongements de Demazure. J. of Algebra, 258(2002), p. 205-215. Zbl1014.17009MR1958903
  17. D. Luna, T. Vust. Plongements d’espaces homogènes. Comment. Math. Helv., 58(1983), 186-245. Zbl0545.14010MR705534
  18. I.V. Mikityuk. On the integrability of invariant Hamiltonian systems with homogeneous configuration spaces. Matem. Sbornik 129(1986), n. 4, p. 514-534. English translation in: Math. USSR Sbornik 57(1987), n.2, 527-546. Zbl0652.70012MR842398
  19. D. Timashev. Homogeneous spaces and equivariant embeddings. Preprint, arXiv:math/0602228. Zbl1237.14057

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.