Classification des espaces homogènes sphériques

M. Brion

Compositio Mathematica (1987)

  • Volume: 63, Issue: 2, page 189-208
  • ISSN: 0010-437X

How to cite

top

Brion, M.. "Classification des espaces homogènes sphériques." Compositio Mathematica 63.2 (1987): 189-208. <http://eudml.org/doc/89857>.

@article{Brion1987,
author = {Brion, M.},
journal = {Compositio Mathematica},
keywords = {spherical homogeneous space; spherical pair},
language = {fre},
number = {2},
pages = {189-208},
publisher = {Martinus Nijhoff Publishers},
title = {Classification des espaces homogènes sphériques},
url = {http://eudml.org/doc/89857},
volume = {63},
year = {1987},
}

TY - JOUR
AU - Brion, M.
TI - Classification des espaces homogènes sphériques
JO - Compositio Mathematica
PY - 1987
PB - Martinus Nijhoff Publishers
VL - 63
IS - 2
SP - 189
EP - 208
LA - fre
KW - spherical homogeneous space; spherical pair
UR - http://eudml.org/doc/89857
ER -

References

top
  1. [A] D.N. Ahiezer: Actions with a finite number of orbits. Funct. Analysis Appl.19 (1985) 1-4. Zbl0576.14045MR783700
  2. [BLV] M. Brion, D. Luna and Th. Vust: Espaces homogènes sphériques. Inventiones Math.84 (1986) 617-632. Zbl0604.14047MR837530
  3. [B1] M. Brion: Quelques propriétés des espaces homogènes sphériques. Manuscripta Math.55 (1986) 191-198. Zbl0604.14048MR833243
  4. [B2] M. Brion: Classification des espaces homogènes sphériques. C.R.A.S. Paris, t. 301, série 1, n 18 (1985) 813-816. Zbl0605.14042MR822838
  5. [B3] M. Brion: Représentations exceptionnelles des groupes semi-simples. Ann. Scient. Ec. Norm. Sup. t.18 (1985) 345-387. Zbl0588.22010MR816368
  6. [BT] A. Borel and J. Tits: Groupes réductifs. Publications mathématiques de l'I.H.E.S. no 27 (1965) 55-150. Zbl0145.17402MR207712
  7. [D] E.B. Dynkin: Semisimple subalgebras of semisimple algebras. A.M.S. Translations series 2, vol. 6, pp. 11-244. Zbl0077.03404
  8. [GS] V. Guillemin et S. Sternberg: Multiplicity-free spaces. J. Diff. Geom.19 (1984) 31-56. Zbl0548.58017MR739781
  9. [He] S. Helgason: Differential Geometry, Lie Groups and Symmetric Spaces. Academic Press (1978). Zbl0451.53038MR514561
  10. [Hu] J.E. Humphreys: Linear algebraic groups. Graduate Text in Mathematics no 21 (Springer-Verlag). Zbl0325.20039MR396773
  11. [K] M. Krämer: Sphärische Untergruppen in kompakten zusammenhängenden Liegruppen. Compositio Math.38 (1979) 129-153. Zbl0402.22006MR528837
  12. [K'] M. Krämer: Multiplicity-free subgroups of compact connected Lie groups. Arch. Math. (Basel) 27 (1976) 28-36. Zbl0322.22011MR399373
  13. [Ka] V. Kac: Some remarks on nilpotent orbits. J. of Alg.64 (1980) 190-213. Zbl0431.17007MR575790
  14. [M] I.V. Mikityuk: On the integrability of invariant hamiltonian systems with homogeneous configuration spaces (en russe). Math. Sbornik129 (171) (1986) 514-534. Zbl0621.70005MR842398

Citations in EuDML Documents

top
  1. Ihor Mykytyuk, Anatoly Stepin, Classification of almost spherical pairs of compact simple Lie groups
  2. Domingo Luna, Variétés sphériques de type A
  3. Gerhard Röhrle, On normal abelian subgroups in parabolic groups
  4. Paolo Bravi, Stéphanie Cupit-Foutou, Classification of strict wonderful varieties
  5. Giovanna Carnovale, Spherical conjugacy classes and the Bruhat decomposition
  6. Paolo Bravi, Classification of spherical varieties
  7. Ivan Losev, Uniqueness properties for spherical varieties

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.