Lectures on spherical and wonderful varieties
- [1] Departement Mathematik Universität Erlangen-Nürnberg Bismarckstraße 1 1 2 91054 Erlangen Deutschland
Les cours du CIRM (2010)
- Volume: 1, Issue: 1, page 33-53
- ISSN: 2108-7164
Access Full Article
topAbstract
topHow to cite
topPezzini, Guido. "Lectures on spherical and wonderful varieties." Les cours du CIRM 1.1 (2010): 33-53. <http://eudml.org/doc/116364>.
@article{Pezzini2010,
abstract = {These notes contain an introduction to the theory of spherical and wonderful varieties. We describe the Luna-Vust theory of embeddings of spherical homogeneous spaces, and explain how wonderful varieties fit in the theory.},
affiliation = {Departement Mathematik Universität Erlangen-Nürnberg Bismarckstraße 1 1 2 91054 Erlangen Deutschland},
author = {Pezzini, Guido},
journal = {Les cours du CIRM},
language = {eng},
number = {1},
pages = {33-53},
publisher = {CIRM},
title = {Lectures on spherical and wonderful varieties},
url = {http://eudml.org/doc/116364},
volume = {1},
year = {2010},
}
TY - JOUR
AU - Pezzini, Guido
TI - Lectures on spherical and wonderful varieties
JO - Les cours du CIRM
PY - 2010
PB - CIRM
VL - 1
IS - 1
SP - 33
EP - 53
AB - These notes contain an introduction to the theory of spherical and wonderful varieties. We describe the Luna-Vust theory of embeddings of spherical homogeneous spaces, and explain how wonderful varieties fit in the theory.
LA - eng
UR - http://eudml.org/doc/116364
ER -
References
top- D.N. Ahiezer, Equivariant completions of homogeneous algebraic varieties by homogeneous divisors, Ann. Global Anal. Geom. 1 (1983), no. 1, 49–78. Zbl0537.14033MR739893
- P. Bravi, Classification of spherical varieties, in this volume Zbl1135.14037
- P. Bravi, D. Luna, An introduction to wonderful varieties with many examples of type , arXiv:0812.2340v1. Zbl1231.14040
- M. Brion, On spherical varieties of rank one, CMS Conf. Proc. 10 (1989), 31–41. Zbl0702.20029MR1021273
- M. Brion, Vers une généralisation des espaces symétriques, J. Algebra 134 (1990), no. 1, 115–143. Zbl0729.14038MR1068418
- M. Brion, Variétés sphériques, http://www-fourier.ujf-grenoble.fr/mbrion/spheriques.ps Zbl0741.14027
- M. Brion, Introduction to actions of algebraic groups, in this volume.
- C. De Concini, C. Procesi, Complete symmetric varieties, Invariant theory (Montecatini, 1982), Lecture Notes in Math., 996, Springer, Berlin, 1983, 1–44. Zbl0581.14041MR718125
- W. Fulton, Introduction to toric varieties, Ann. of Math. Stud. 131, Princeton University Press, Princeton, NJ, 1993. Zbl0813.14039MR1234037
- A. Huckleberry, D. Snow, Almost-homogeneous Kähler manifolds with hypersurface orbits, Osaka J. of Math. 19 (1982), 763–786. Zbl0507.32023MR687772
- J. Humphreys, Linear algebraic groups, Graduate Texts in Mathematics, 21, Springer-Verlag, New York-Heidelberg, 1975. Zbl0325.20039MR396773
- F. Knop., The Luna-Vust theory of spherical embeddings, Proceedings of the Hyderabad Conference on Algebraic Groups (Hyderabad, 1989), 225–249, Manoj Prakashan, Madras, 1991. Zbl0812.20023MR1131314
- F. Knop, Automorphisms, root systems, and compactifications of homogeneous varieties, J. Amer. Math. Soc. 9 (1996), no. 1, 153–174. Zbl0862.14034MR1311823
- F. Knop, H. Kraft, D. Luna, T. Vust, Local properties of algebraic group actions, Algebraische Transformationsgruppen und Invariantentheorie (H. Kraft, P. Slodowy, T. Springer eds.) DMV-Seminar 13, Birkhäuser Verlag (Basel-Boston) (1989) 63–76. Zbl0722.14032MR1044585
- I. Losev, Uniqueness property for spherical homogeneous spaces, Duke Mathematical Journal 147 (2009), no. 2, 315–343. Zbl1175.14035MR2495078
- D. Luna, Toute variété magnifique est sphérique, Transform. Groups 1 (1996), no. 3, 249–258. Zbl0912.14017MR1417712
- D. Luna, Grosses cellules pour les variétés sphériques, Algebraic groups and Lie groups, Austral. Math. Soc. Lect. Ser., 9, Cambridge Univ. Press, Cambridge, 1997, 267–280. Zbl0902.14037MR1635686
- D. Luna, Variétés sphériques de type , Inst. Hautes Études Sci. Publ. Math. 94 (2001), 161–226. Zbl1085.14039MR1896179
- Luna, D. and Vust, T., Plongements d’espaces homogènes, Comment. Math. Helv. 58 (1983), no. 2, 186–245. Zbl0545.14010MR705534
- D.A. Timashev, Homogeneous spaces and equivariant embedding, arXiv:math/0602228v1. Zbl1237.14057
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.