Lectures on spherical and wonderful varieties

Guido Pezzini[1]

  • [1] Departement Mathematik Universität Erlangen-Nürnberg Bismarckstraße 1 1 2 91054 Erlangen Deutschland

Les cours du CIRM (2010)

  • Volume: 1, Issue: 1, page 33-53
  • ISSN: 2108-7164

Abstract

top
These notes contain an introduction to the theory of spherical and wonderful varieties. We describe the Luna-Vust theory of embeddings of spherical homogeneous spaces, and explain how wonderful varieties fit in the theory.

How to cite

top

Pezzini, Guido. "Lectures on spherical and wonderful varieties." Les cours du CIRM 1.1 (2010): 33-53. <http://eudml.org/doc/116364>.

@article{Pezzini2010,
abstract = {These notes contain an introduction to the theory of spherical and wonderful varieties. We describe the Luna-Vust theory of embeddings of spherical homogeneous spaces, and explain how wonderful varieties fit in the theory.},
affiliation = {Departement Mathematik Universität Erlangen-Nürnberg Bismarckstraße 1 1 2 91054 Erlangen Deutschland},
author = {Pezzini, Guido},
journal = {Les cours du CIRM},
language = {eng},
number = {1},
pages = {33-53},
publisher = {CIRM},
title = {Lectures on spherical and wonderful varieties},
url = {http://eudml.org/doc/116364},
volume = {1},
year = {2010},
}

TY - JOUR
AU - Pezzini, Guido
TI - Lectures on spherical and wonderful varieties
JO - Les cours du CIRM
PY - 2010
PB - CIRM
VL - 1
IS - 1
SP - 33
EP - 53
AB - These notes contain an introduction to the theory of spherical and wonderful varieties. We describe the Luna-Vust theory of embeddings of spherical homogeneous spaces, and explain how wonderful varieties fit in the theory.
LA - eng
UR - http://eudml.org/doc/116364
ER -

References

top
  1. D.N. Ahiezer, Equivariant completions of homogeneous algebraic varieties by homogeneous divisors, Ann. Global Anal. Geom. 1 (1983), no. 1, 49–78. Zbl0537.14033MR739893
  2. P. Bravi, Classification of spherical varieties, in this volume Zbl1135.14037
  3. P. Bravi, D. Luna, An introduction to wonderful varieties with many examples of type F 4 , arXiv:0812.2340v1. Zbl1231.14040
  4. M. Brion, On spherical varieties of rank one, CMS Conf. Proc. 10 (1989), 31–41. Zbl0702.20029MR1021273
  5. M. Brion, Vers une généralisation des espaces symétriques, J. Algebra 134 (1990), no. 1, 115–143. Zbl0729.14038MR1068418
  6. M. Brion, Variétés sphériques, http://www-fourier.ujf-grenoble.fr/ mbrion/spheriques.ps Zbl0741.14027
  7. M. Brion, Introduction to actions of algebraic groups, in this volume. 
  8. C. De Concini, C. Procesi, Complete symmetric varieties, Invariant theory (Montecatini, 1982), Lecture Notes in Math., 996, Springer, Berlin, 1983, 1–44. Zbl0581.14041MR718125
  9. W. Fulton, Introduction to toric varieties, Ann. of Math. Stud. 131, Princeton University Press, Princeton, NJ, 1993. Zbl0813.14039MR1234037
  10. A. Huckleberry, D. Snow, Almost-homogeneous Kähler manifolds with hypersurface orbits, Osaka J. of Math. 19 (1982), 763–786. Zbl0507.32023MR687772
  11. J. Humphreys, Linear algebraic groups, Graduate Texts in Mathematics, 21, Springer-Verlag, New York-Heidelberg, 1975. Zbl0325.20039MR396773
  12. F. Knop., The Luna-Vust theory of spherical embeddings, Proceedings of the Hyderabad Conference on Algebraic Groups (Hyderabad, 1989), 225–249, Manoj Prakashan, Madras, 1991. Zbl0812.20023MR1131314
  13. F. Knop, Automorphisms, root systems, and compactifications of homogeneous varieties, J. Amer. Math. Soc. 9 (1996), no. 1, 153–174. Zbl0862.14034MR1311823
  14. F. Knop, H. Kraft, D. Luna, T. Vust, Local properties of algebraic group actions, Algebraische Transformationsgruppen und Invariantentheorie (H. Kraft, P. Slodowy, T. Springer eds.) DMV-Seminar 13, Birkhäuser Verlag (Basel-Boston) (1989) 63–76. Zbl0722.14032MR1044585
  15. I. Losev, Uniqueness property for spherical homogeneous spaces, Duke Mathematical Journal 147 (2009), no. 2, 315–343. Zbl1175.14035MR2495078
  16. D. Luna, Toute variété magnifique est sphérique, Transform. Groups 1 (1996), no. 3, 249–258. Zbl0912.14017MR1417712
  17. D. Luna, Grosses cellules pour les variétés sphériques, Algebraic groups and Lie groups, Austral. Math. Soc. Lect. Ser., 9, Cambridge Univ. Press, Cambridge, 1997, 267–280. Zbl0902.14037MR1635686
  18. D. Luna, Variétés sphériques de type A , Inst. Hautes Études Sci. Publ. Math. 94 (2001), 161–226. Zbl1085.14039MR1896179
  19. Luna, D. and Vust, T., Plongements d’espaces homogènes, Comment. Math. Helv. 58 (1983), no. 2, 186–245. Zbl0545.14010MR705534
  20. D.A. Timashev, Homogeneous spaces and equivariant embedding, arXiv:math/0602228v1. Zbl1237.14057

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.