Equivariant degenerations of spherical modules for groups of type A

Stavros Argyrios Papadakis[1]; Bart Van Steirteghem[2]

  • [1] Universidade Técnica de Lisboa Centro de Análise Matemática Geometria e Sistemas Dinâmicos Departamento de Matemática Instituto Superior Técnico Av. Rovisco Pais 1049-001 Lisboa (Portugal)
  • [2] Medgar Evers College Department of Mathematics City University of New York 1650 Bedford Ave. Brooklyn, NY 11225 (USA)

Annales de l’institut Fourier (2012)

  • Volume: 62, Issue: 5, page 1765-1809
  • ISSN: 0373-0956

Abstract

top
V. Alexeev and M. Brion introduced, for a given a complex reductive group, a moduli scheme of affine spherical varieties with prescribed weight monoid. We provide new examples of this moduli scheme by proving that it is an affine space when the given group is of type A and the prescribed weight monoid is that of a spherical module.

How to cite

top

Papadakis, Stavros Argyrios, and Van Steirteghem, Bart. "Equivariant degenerations of spherical modules for groups of type $\mathsf {A}$." Annales de l’institut Fourier 62.5 (2012): 1765-1809. <http://eudml.org/doc/251050>.

@article{Papadakis2012,
abstract = {V. Alexeev and M. Brion introduced, for a given a complex reductive group, a moduli scheme of affine spherical varieties with prescribed weight monoid. We provide new examples of this moduli scheme by proving that it is an affine space when the given group is of type $\mathsf \{A\}$ and the prescribed weight monoid is that of a spherical module.},
affiliation = {Universidade Técnica de Lisboa Centro de Análise Matemática Geometria e Sistemas Dinâmicos Departamento de Matemática Instituto Superior Técnico Av. Rovisco Pais 1049-001 Lisboa (Portugal); Medgar Evers College Department of Mathematics City University of New York 1650 Bedford Ave. Brooklyn, NY 11225 (USA)},
author = {Papadakis, Stavros Argyrios, Van Steirteghem, Bart},
journal = {Annales de l’institut Fourier},
keywords = {Invariant Hilbert scheme; spherical module; spherical variety; equivariant degeneration},
language = {eng},
number = {5},
pages = {1765-1809},
publisher = {Association des Annales de l’institut Fourier},
title = {Equivariant degenerations of spherical modules for groups of type $\mathsf \{A\}$},
url = {http://eudml.org/doc/251050},
volume = {62},
year = {2012},
}

TY - JOUR
AU - Papadakis, Stavros Argyrios
AU - Van Steirteghem, Bart
TI - Equivariant degenerations of spherical modules for groups of type $\mathsf {A}$
JO - Annales de l’institut Fourier
PY - 2012
PB - Association des Annales de l’institut Fourier
VL - 62
IS - 5
SP - 1765
EP - 1809
AB - V. Alexeev and M. Brion introduced, for a given a complex reductive group, a moduli scheme of affine spherical varieties with prescribed weight monoid. We provide new examples of this moduli scheme by proving that it is an affine space when the given group is of type $\mathsf {A}$ and the prescribed weight monoid is that of a spherical module.
LA - eng
KW - Invariant Hilbert scheme; spherical module; spherical variety; equivariant degeneration
UR - http://eudml.org/doc/251050
ER -

References

top
  1. Valery Alexeev, Michel Brion, Moduli of affine schemes with reductive group action, J. Algebraic Geom. 14 (2005), 83-117 Zbl1081.14005MR2092127
  2. Chal Benson, Gail Ratcliff, A classification of multiplicity free actions, J. Algebra 181 (1996), 152-186 Zbl0869.14021MR1382030
  3. P. Bravi, S. Cupit-Foutou, Equivariant deformations of the affine multicone over a flag variety, Adv. Math. 217 (2008), 2800-2821 Zbl1171.14029MR2397467
  4. Paolo Bravi, Classification of spherical varieties, Les cours du CIRM 1 (2010), 99-111 
  5. Paolo Bravi, Domingo Luna, An introduction to wonderful varieties with many examples of type F 4 , J. Algebra 329 (2011), 4-51 Zbl1231.14040MR2769314
  6. Michel Brion, Variétés sphériques, notes de la session de la Société Mathématique de France “Opérations hamiltoniennes et opérations de groupes algébriques,” Grenoble, (1997) 
  7. Michel Brion, Introduction to actions of algebraic groups, Les cours du CIRM 1 (2010), 1-22 Zbl1217.14029MR2562620
  8. Michel Brion, Invariant Hilbert schemes, arXiv:1102.0198v2 [math.AG] (2011) 
  9. Romain Camus, Variétés sphériques affines lisses, (2001), Grenoble 
  10. S. Cupit-Foutou, Invariant Hilbert schemes and wonderful varieties, arXiv: 0811.1567v2 [math.AG] (2009) Zbl1086.14039
  11. S. Cupit-Foutou, Wonderful varieties: a geometrical realization, arXiv:0907.2852v3 [math.AG] (2010) Zbl1195.14068
  12. Thomas Delzant, Classification des actions hamiltoniennes complètement intégrables de rang deux, Ann. Global Anal. Geom. 8 (1990), 87-112 Zbl0711.58017MR1075241
  13. Daniel R. Grayson, Michael E. Stillman, Macaulay2, a software system for research in algebraic geometry, available at 
  14. Roger Howe, Tōru Umeda, The Capelli identity, the double commutant theorem, and multiplicity-free actions, Math. Ann. 290 (1991), 565-619 Zbl0733.20019MR1116239
  15. James E. Humphreys, Linear algebraic groups, (1975), Springer-Verlag, New York Zbl0471.20029MR396773
  16. Sébastien Jansou, Déformations des cônes de vecteurs primitifs, Math. Ann. 338 (2007), 627-667 Zbl1126.14057MR2317933
  17. V. G. Kac, Some remarks on nilpotent orbits, J. Algebra 64 (1980), 190-213 Zbl0431.17007MR575790
  18. Friedrich Knop, Automorphisms, root systems, and compactifications of homogeneous varieties, J. Amer. Math. Soc. 9 (1996), 153-174 Zbl0862.14034MR1311823
  19. Friedrich Knop, Some remarks on multiplicity free spaces, Representation theories and algebraic geometry (Montreal, PQ, 1997) 514 (1998), 301-317, Kluwer Acad. Publ., Dordrecht Zbl0915.20021MR1653036
  20. Friedrich Knop, Automorphisms of multiplicity free Hamiltonian manifolds, J. Amer. Math. Soc. 24 (2011), 567-601 Zbl1226.53082MR2748401
  21. Andrew S. Leahy, A classification of multiplicity free representations, J. Lie Theory 8 (1998), 367-391 Zbl0910.22015MR1650378
  22. Ivan V. Losev, Proof of the Knop conjecture, Ann. Inst. Fourier (Grenoble) 59 (2009), 1105-1134 Zbl1191.14075MR2543664
  23. Ivan V. Losev, Uniqueness property for spherical homogeneous spaces, Duke Math. J. 147 (2009), 315-343 Zbl1175.14035MR2495078
  24. D. G. Northcott, Syzygies and specializations, Proc. London Math. Soc. (3) 15 (1965), 1-25 Zbl0128.03302MR169892
  25. Dmitri Panyushev, On deformation method in invariant theory, Ann. Inst. Fourier (Grenoble) 47 (1997), 985-1012 Zbl0878.14008MR1488242
  26. Stavros Papadakis, Bart Van Steirteghem, Equivariant degenerations of spherical modules for groups of type A , arXiv:1008.0911v3 [math.AG] (2011) Zbl1267.14018
  27. Guido Pezzini, Lectures on spherical and wonderful varieties, Les cours du CIRM 1 (2010), 33-53 
  28. V. L. Popov, Contractions of actions of reductive algebraic groups, Mat. Sb. (N.S.) 130(172) (1986), 310-334, 431 Zbl0613.14034MR865764
  29. È. B. Vinberg, V. L. Popov, A certain class of quasihomogeneous affine varieties, Izv. Akad. Nauk SSSR Ser. Mat. 36 (1972), 749-764 Zbl0248.14014MR313260

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.