Moment maps and geometric invariant theory

Chris Woodward[1]

  • [1] Mathematics-Hill Center, Rutgers University, 110 Frelinghuysen Road, Piscataway, NJ 08854-8019, U.S.A.

Les cours du CIRM (2010)

  • Volume: 1, Issue: 1, page 55-98
  • ISSN: 2108-7164

How to cite


Woodward, Chris. "Moment maps and geometric invariant theory." Les cours du CIRM 1.1 (2010): 55-98. <>.

affiliation = {Mathematics-Hill Center, Rutgers University, 110 Frelinghuysen Road, Piscataway, NJ 08854-8019, U.S.A.},
author = {Woodward, Chris},
journal = {Les cours du CIRM},
language = {eng},
number = {1},
pages = {55-98},
publisher = {CIRM},
title = {Moment maps and geometric invariant theory},
url = {},
volume = {1},
year = {2010},

AU - Woodward, Chris
TI - Moment maps and geometric invariant theory
JO - Les cours du CIRM
PY - 2010
VL - 1
IS - 1
SP - 55
EP - 98
LA - eng
UR -
ER -


  1. R. Abraham and J. Marsden. Foundations of Mechanics. Benjamin/Cummings, Reading, 1978. Zbl0393.70001MR515141
  2. S. Agnihotri and C. Woodward. Eigenvalues of products of unitary matrices and quantum Schubert calculus. Math. Res. Lett., 5(6):817–836, 1998. Zbl1004.14013MR1671192
  3. Dmitri N. Akhiezer. Lie group actions in complex analysis. Aspects of Mathematics, E27. Friedr. Vieweg & Sohn, Braunschweig, 1995. Zbl0845.22001MR1334091
  4. J. Arms, R. Cushman, and M. Gotay. A universal reduction procedure for Hamiltonian group actions. In T. Ratiu, editor, The Geometry of Hamiltonian Systems, volume 22 of Mathematical Sciences Research Institute Publications, Berkeley, 1989, 1991. Springer-Verlag, Berlin-Heidelberg-New York. Zbl0742.58016MR1123275
  5. M. F. Atiyah. Convexity and commuting Hamiltonians. Bull. London Math. Soc., 14:1–15, 1982. Zbl0482.58013MR642416
  6. M. F. Atiyah and R. Bott. A Lefschetz fixed point formula for elliptic complexes. II. Applications. Ann. of Math. (2), 88:451–491, 1968. Zbl0167.21703MR232406
  7. M. F. Atiyah and R. Bott. The moment map and equivariant cohomology. Topology, 23(1):1–28, 1984. Zbl0521.58025MR721448
  8. M. Audin. The Topology of Torus Actions on Symplectic Manifolds, volume 93 of Progress in Mathematics. Birkhäuser, Boston, 1991. Zbl0726.57029MR1106194
  9. Chris Beasley and Edward Witten. Non-abelian localization for Chern-Simons theory. J. Differential Geom., 70(2):183–323, 2005. Zbl1097.58012MR2192257
  10. P. Belkale. Local systems on 1 - S for S a finite set. Compositio Math., 129(1):67–86, 2001. Zbl1042.14031MR1856023
  11. Prakash Belkale and Shrawan Kumar. Eigenvalue problem and a new product in cohomology of flag varieties. Invent. Math., 166(1):185–228, 2006. Zbl1106.14037MR2242637
  12. A. Berenstein and R. Sjamaar. Coadjoint orbits, moment polytopes, and the Hilbert-Mumford criterion. J. Amer. Math. Soc., 13(2):433–466 (electronic), 2000. Zbl0979.53092MR1750957
  13. A. Białynicki-Birula. Some theorems on actions of algebraic groups. Ann. of Math. (2), 98:480–497, 1973. Zbl0275.14007MR366940
  14. A. M. Bloch and T. S. Ratiu. Convexity and integrability. In Symplectic geometry and mathematical physics (Aix-en-Provence, 1990), volume 99 of Progr. Math., pages 48–79. Birkhäuser Boston, Boston, MA, 1991. Zbl0755.53023MR1156534
  15. Raoul Bott. Homogeneous vector bundles. Ann. of Math. (2), 66:203–248, 1957. Zbl0094.35701MR89473
  16. M. Brion. Sur l’image de l’application moment. In M.-P. Malliavin, editor, Séminaire d’algèbre Paul Dubreuil et Marie-Paule Malliavin, volume 1296 of Lecture Notes in Mathematics, pages 177–192, Paris, 1986, 1987. Springer-Verlag, Berlin-Heidelberg-New York. Zbl0667.58012MR932055
  17. M. Brion. Groupe de Picard et nombres caractéristiques des variétés sphériques. Duke Math. J., 58(2):397–424, 1989. Zbl0701.14052MR1016427
  18. M. Brion, D. Luna, and Th. Vust. Espaces homogènes sphériques. Invent. Math., 84:617–632, 1986. Zbl0604.14047MR837530
  19. M. Brion and M. Vergne. Lattice points in simple polytopes. J. Amer. Math. Soc., 10:371–392, 1997. Zbl0871.52009MR1415319
  20. L. Bruasse and A. Teleman. Harder-Narasimhan filtrations and optimal destabilizing vectors in complex geometry. Ann. Inst. Fourier (Grenoble), 55(3):1017–1053, 2005. Zbl1093.32009MR2149409
  21. Ana Cannas da Silva. Introduction to symplectic and Hamiltonian geometry. Publicações Matemáticas do IMPA. [IMPA Mathematical Publications]. Instituto de Matemática Pura e Aplicada (IMPA), Rio de Janeiro, 2003. Zbl1073.53102MR2115646
  22. J. S. Carter, D. E. Flath, and M. Saito. The classical and quantum 6 j -symbols. Princeton University Press, Princeton, NJ, 1995. Zbl0851.17001MR1366832
  23. David A. Cox. The homogeneous coordinate ring of a toric variety. J. Algebraic Geom., 4(1):17–50, 1995. Zbl0846.14032MR1299003
  24. T. Delzant. Hamiltoniens périodiques et images convexes de l’application moment. Bull. Soc. Math. France, 116:315–339, 1988. Zbl0676.58029MR984900
  25. T. Delzant. Classification des actions Hamiltoniennes des groupes de rang 2 . Ann. Global Anal. Geom., 8(1):87–112, 1990. Zbl0711.58017MR1075241
  26. S. K. Donaldson and P. Kronheimer. The geometry of four-manifolds. Oxford Mathematical Monographs. Oxford University Press, New York, 1990. Zbl0820.57002MR1079726
  27. J. J. Duistermaat. Equivariant cohomology and stationary phase. In Symplectic geometry and quantization, (Sanda and Yokohama, 1993), volume 179 of Contemp. Math., pages 45–62, Providence, RI, 1994. Amer. Math. Soc. Zbl0852.57029MR1319601
  28. Dorothee Feldmüller. Two-orbit varieties with smaller orbit of codimension two. Arch. Math. (Basel), 54(6):582–593, 1990. Zbl0668.14031MR1052980
  29. W. Fulton. Introduction to Toric Varieties, volume 131 of Annals of Mathematics Studies. Princeton University Press, Princeton, 1993. Zbl0813.14039MR1234037
  30. William Fulton. Eigenvalues, invariant factors, highest weights, and Schubert calculus. Bull. Amer. Math. Soc. (N.S.), 37(3):209–249 (electronic), 2000. Zbl0994.15021MR1754641
  31. Alexander Grothendieck. Cohomologie locale des faisceaux cohérents et théorèmes de Lefschetz locaux et globaux (SGA 2). Documents Mathématiques (Paris) [Mathematical Documents (Paris)], 4. Société Mathématique de France, Paris, 2005. Séminaire de Géométrie Algébrique du Bois Marie, 1962, Augmenté d’un exposé de Michèle Raynaud. [With an exposé by Michèle Raynaud], With a preface and edited by Yves Laszlo, Revised reprint of the 1968 French original. Zbl0197.47202
  32. V. Guillemin and S. Sternberg. Convexity properties of the moment mapping. Invent. Math., 67:491–513, 1982. Zbl0503.58017MR664117
  33. V. Guillemin and S. Sternberg. Geometric quantization and multiplicities of group representations. Invent. Math., 67:515–538, 1982. Zbl0503.58018MR664118
  34. V. Guillemin and S. Sternberg. Homogeneous quantization and multiplicities of group representations. J. Funct. Anal., 47:344–380, 1982. Zbl0733.58021MR665022
  35. V. Guillemin and S. Sternberg. Geometric Asymptotics, volume 14 of Mathematical Surveys and Monographs. Amer. Math. Soc., Providence, R. I., revised edition, 1990. Zbl0364.53011MR516965
  36. V. Guillemin and S. Sternberg. Symplectic Techniques in Physics. Cambridge Univ. Press, Cambridge, 1990. Zbl0734.58005MR1066693
  37. V. W. Guillemin and S. Sternberg. Supersymmetry and equivariant de Rham theory. Springer-Verlag, Berlin, 1999. With an appendix containing two reprints by Henri Cartan [MR 13,107e; MR 13,107f]. Zbl0934.55007MR1689252
  38. Victor Guillemin. Kaehler structures on toric varieties. J. Differential Geom., 40(2):285–309, 1994. Zbl0813.53042MR1293656
  39. Victor Guillemin and Reyer Sjamaar. Convexity theorems for varieties invariant under a Borel subgroup. Pure Appl. Math. Q., 2(3, part 1):637–653, 2006. Zbl1107.53055MR2252111
  40. Victor Guillemin and Shlomo Sternberg. Multiplicity-free spaces. J. Differential Geom., 19(1):31–56, 1984. Zbl0548.58017MR739781
  41. R. Hartshorne. Residues and duality. Lecture notes of a seminar on the work of A. Grothendieck, given at Harvard 1963/64. With an appendix by P. Deligne. Lecture Notes in Mathematics, No. 20. Springer-Verlag, Berlin, 1966. MR222093
  42. J.-C. Hausmann and A. Knutson. The cohomology ring of polygon spaces. Ann. Inst. Fourier (Grenoble), 48(1):281–321, 1998. Zbl0903.14019MR1614965
  43. P. Heinzner and F. Loose. Reduction of complex Hamiltonian G -spaces. Geom. Funct. Anal., 4(3):288–297, 1994. Zbl0816.53018MR1274117
  44. Peter Heinzner and Alan Huckleberry. Kählerian structures on symplectic reductions. In Complex analysis and algebraic geometry, pages 225–253. de Gruyter, Berlin, 2000. Zbl0999.32011MR1760879
  45. S. Helgason. Differential geometry, Lie groups, and symmetric spaces. Academic Press, New York, 1978. Zbl0451.53038MR514561
  46. Wim H. Hesselink. Uniform instability in reductive groups. J. Reine Angew. Math., 303/304:74–96, 1978. Zbl0386.20020MR514673
  47. Wim H. Hesselink. Desingularizations of varieties of nullforms. Invent. Math., 55(2):141–163, 1979. Zbl0401.14006MR553706
  48. A. Horn. Doubly stochastic matrices and the diagonal of a rotation matrix. Amer. J. Math., 76:620–630, 1954. Zbl0055.24601MR63336
  49. A. Horn. Eigenvalues of sums of Hermitian matrices. Pacific J. Math., 12:225–241, 1962. Zbl0112.01501MR140521
  50. Ignasi Mundet i Riera. A hilbert–mumford criterion for polystability in kaehler geometry, 2008. Zbl1201.53086
  51. L. C. Jeffrey and F. C. Kirwan. Localization for nonabelian group actions. Topology, 34:291–327, 1995. Zbl0833.55009MR1318878
  52. G. Kempf and L. Ness. The length of vectors in representation spaces. In K. Lonsted, editor, Algebraic Geometry, volume 732 of Lecture Notes in Mathematics, pages 233–244, Copenhagen, 1978, 1979. Springer-Verlag, Berlin-Heidelberg-New York. Zbl0407.22012MR555701
  53. F. C. Kirwan. Cohomology of Quotients in Symplectic and Algebraic Geometry, volume 31 of Mathematical Notes. Princeton Univ. Press, Princeton, 1984. Zbl0553.14020MR766741
  54. F. C. Kirwan. Convexity properties of the moment mapping, III. Invent. Math., 77:547–552, 1984. Zbl0561.58016MR759257
  55. A. A. Klyachko. Equivariant vector bundles on toric varieties and some problems of linear algebra. In Topics in algebra, Part 2 (Warsaw, 1988), pages 345–355. PWN, Warsaw, 1990. Zbl0761.14017MR1171283
  56. F. Knop. Automorphisms of multiplicity free hamiltonian manifolds. arXiv:1002.4256. Zbl1226.53082
  57. Friedrich Knop. The Luna-Vust theory of spherical embeddings. In Proceedings of the Hyderabad Conference on Algebraic Groups (Hyderabad, 1989), pages 225–249, Madras, 1991. Manoj Prakashan. Zbl0812.20023MR1131314
  58. A. Knutson and T. Tao. The honeycomb model of g l n ( c ) tensor products. I. Proof of the saturation conjecture. J. Amer. Math. Soc., 12(4):1055–1090, 1999. Zbl0944.05097MR1671451
  59. Allen Knutson and Terence Tao. Honeycombs and sums of Hermitian matrices. Notices Amer. Math. Soc., 48(2):175–186, 2001. Zbl1047.15006MR1811121
  60. Allen Knutson, Terence Tao, and Christopher Woodward. The honeycomb model of GL n ( ) tensor products. II. Puzzles determine facets of the Littlewood-Richardson cone. J. Amer. Math. Soc., 17(1):19–48 (electronic), 2004. Zbl1043.05111MR2015329
  61. Allen Knutson, Terence Tao, and Christopher Woodward. A positive proof of the Littlewood-Richardson rule using the octahedron recurrence. Electron. J. Combin., 11(1):Research Paper 61, 18 pp. (electronic), 2004. Zbl1053.05119MR2097327
  62. B. Kostant. Quantization and unitary representations. In C. T. Taam, editor, Lectures in Modern Analysis and Applications III, volume 170 of Lecture Notes in Mathematics, pages 87–208, Washington, D.C., 1970. Springer-Verlag, Berlin-Heidelberg-New York. Zbl0223.53028MR294568
  63. Bertram Kostant. On convexity, the Weyl group and the Iwasawa decomposition. Ann. Sci. École Norm. Sup. (4), 6:413–455 (1974), 1973. Zbl0293.22019MR364552
  64. E. Lerman. Symplectic cuts. Math. Res. Letters, 2:247–258, 1995. Zbl0835.53034MR1338784
  65. E. Lerman, E. Meinrenken, S. Tolman, and C. Woodward. Non-abelian convexity by symplectic cuts. Topology, 37:245–259, 1998. Zbl0913.58023MR1489203
  66. Eugene Lerman. Gradient flow of the norm squared of a moment map. Enseign. Math. (2), 51(1-2):117–127, 2005. Zbl1103.53051MR2154623
  67. I. Losev. Proof of the Knop Conjecture. arXiv:math/0612561. Zbl1191.14075MR2543664
  68. D. Luna. Slices étales. Sur les groupes algébriques, Mém. Soc. Math. France, 33:81–105, 1973. Zbl0286.14014MR342523
  69. D. Luna and Th. Vust. Plongements d’espaces homogènes. Comment. Math. Helv., 58(2):186–245, 1983. Zbl0545.14010MR705534
  70. I. G. Macdonald. Symmetric functions and Hall polynomials. Oxford University Press, New York, 1995. With contributions by A. Zelevinsky. Zbl0824.05059MR1354144
  71. J. Marsden and A. Weinstein. Reduction of symplectic manifolds with symmetry. Rep. Math. Phys., 5:121–130, 1974. Zbl0327.58005MR402819
  72. E. Meinrenken. Symplectic surgery and the Spin c -Dirac operator. Adv. in Math., 134:240–277, 1998. Zbl0929.53045MR1617809
  73. K. Meyer. Symmetries and integrals in mathematics. In M. M. Peixoto, editor, Dynamical Systems, Univ. of Bahia, 1971, 1973. Academic Press, New York. MR331427
  74. D. Mumford, J. Fogarty, and F. Kirwan. Geometric Invariant Theory, volume 34 of Ergebnisse der Mathematik und ihrer Grenzgebiete, 2. Folge. Springer-Verlag, Berlin-Heidelberg-New York, third edition, 1994. Zbl0504.14008MR1304906
  75. M. S. Narasimhan and C. S. Seshadri. Stable and unitary vector bundles on a compact Riemann surface. Ann. of Math. (2), 82:540–567, 1965. Zbl0171.04803MR184252
  76. L. Ness. A stratification of the null cone via the moment map. Amer. J. Math., 106(6):1281–1329, 1984. with an appendix by D. Mumford. Zbl0604.14006MR765581
  77. P. E. Newstead. Introduction to moduli problems and orbit spaces, volume 51 of Tata Institute of Fundamental Research Lectures on Mathematics and Physics. Tata Institute of Fundamental Research, Bombay, 1978. Zbl0411.14003MR546290
  78. P. E. Newstead. Geometric invariant theory. In Moduli spaces and vector bundles, volume 359 of London Math. Soc. Lecture Note Ser., pages 99–127. Cambridge Univ. Press, Cambridge, 2009. Zbl1187.14054MR2537067
  79. Tadao Oda. Convex bodies and algebraic geometry, volume 15 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)]. Springer-Verlag, Berlin, 1988. An introduction to the theory of toric varieties, Translated from the Japanese. Zbl0628.52002MR922894
  80. P.-E. Paradan. The moment map and equivariant cohomology with generalized coefficients. Topology, 39(2):401–444, 2000. Zbl0941.37050MR1722000
  81. P.-E. Paradan. Localization of the Riemann-Roch character. J. Funct. Anal., 187(2):442–509, 2001. Zbl1001.53062MR1875155
  82. S. Ramanan and A. Ramanathan. Some remarks on the instability flag. Tohoku Math. J. (2), 36(2):269–291, 1984. Zbl0567.14027MR742599
  83. N. Ressayre. Geometric invariant theory and generalized eigenvalue problem. arXiv:0704.2127. Zbl1245.14045
  84. J. Roberts. Asymptotics and 6j-symbols. Geom. Topol. Monogr., 4:245–261, 2002. math.QA/0201177. Zbl1012.22037MR2002614
  85. Alexander H. W. Schmitt. Geometric invariant theory and decorated principal bundles. Zurich Lectures in Advanced Mathematics. European Mathematical Society (EMS), Zürich, 2008. Zbl1159.14001MR2437660
  86. I. Schur. über eine klasse von mittelbindungen mit anwendungen auf der determinanten theorie. S. B. Berlin Math. Ges., 22:9–20, 1923. 
  87. Jean-Pierre Serre. Représentations linéaires et espaces homogènes kählériens des groupes de Lie compacts (d’après Armand Borel et André Weil). In Séminaire Bourbaki, Vol. 2, pages Exp. No. 100, 447–454. Soc. Math. France, Paris, 1995. Zbl0121.16203MR1609256
  88. C. S. Seshadri. Fibrés vectoriels sur les courbes algébriques, volume 96 of Astérisque. Société Mathématique de France, Paris, 1982. Notes written by J.-M. Drezet from a course at the École Normale Supérieure, June 1980. Zbl0517.14008MR699278
  89. Stephen S. Shatz. The decomposition and specialization of algebraic families of vector bundles. Compositio Math., 35(2):163–187, 1977. Zbl0371.14010MR498573
  90. G. C. Shephard. An elementary proof of Gram’s theorem for convex polytopes. Canad. J. Math., 19:1214–1217, 1967. Zbl0157.52504MR225228
  91. R. Sjamaar. Holomorphic slices, symplectic reduction and multiplicities of representations. Ann. of Math. (2), 141:87–129, 1995. Zbl0827.32030MR1314032
  92. R. Sjamaar and E. Lerman. Stratified symplectic spaces and reduction. Ann. of Math. (2), 134:375–422, 1991. Zbl0759.58019MR1127479
  93. Peter Slodowy. Die Theorie der optimalen Einparameteruntergruppen für instabile Vektoren. In Algebraische Transformationsgruppen und Invariantentheorie, volume 13 of DMV Sem., pages 115–131. Birkhäuser, Basel, 1989. Zbl0753.14006MR1044588
  94. Andrei Teleman. Symplectic stability, analytic stability in non-algebraic complex geometry. Internat. J. Math., 15(2):183–209, 2004. Zbl1089.53058MR2055369
  95. C. Teleman. The quantization conjecture revisited. Ann. of Math. (2), 152(1):1–43, 2000. Zbl0980.53102MR1792291
  96. R. P. Thomas. Notes on GIT and symplectic reduction for bundles and varieties. In Surveys in differential geometry. Vol. X, volume 10 of Surv. Differ. Geom., pages 221–273. Int. Press, Somerville, MA, 2006. Zbl1132.14043MR2408226
  97. Gang Tian. On a set of polarized Kähler metrics on algebraic manifolds. J. Differential Geom., 32(1):99–130, 1990. Zbl0706.53036MR1064867
  98. Katrin Wehrheim and Chris T. Woodward. Functoriality for Lagrangian correspondences in Floer theory. arXiv:0708.2851. Zbl1206.53088
  99. A. Weinstein. The symplectic “category”. In Differential geometric methods in mathematical physics (Clausthal, 1980), volume 905 of Lecture Notes in Math., pages 45–51. Springer, Berlin, 1982. Zbl0486.58017MR657441
  100. E. Witten. Two-dimensional gauge theories revisited. J. Geom. Phys., 9:303–368, 1992. Zbl0768.53042MR1185834
  101. Edward Witten. Holomorphic Morse inequalities. In Algebraic and differential topology—global differential geometry, volume 70 of Teubner-Texte Math., pages 318–333. Teubner, Leipzig, 1984. Zbl0588.32009MR792703
  102. C. Woodward. The classification of transversal multiplicity-free group actions. Ann. Global Anal. Geom., 14:3–42, 1996. Zbl0877.58022MR1375064
  103. C. Woodward. Multiplicity-free Hamiltonian actions need not be Kähler. Invent. Math., 131(2):311–319, 1998. Zbl0902.58014MR1608579
  104. Chris T. Woodward. Localization via the norm-square of the moment map and the two-dimensional Yang-Mills integral. J. Symp. Geom., 3(1):17–55, 2006. Zbl1103.53052MR2198772
  105. Siye Wu. Equivariant holomorphic Morse inequalities. II. Torus and non-abelian group actions. J. Differential Geom., 51(3):401–429, 1999. Zbl1024.58007MR1726735

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.