Somme Ponctuelle D'operateurs Maximaux Monotones Pointwise Sum of two Maximal Monotone Operators

Attouch, H.; Riahi, H.; Théra, M.

Serdica Mathematical Journal (1996)

  • Volume: 22, Issue: 3, page 267-292
  • ISSN: 1310-6600

Abstract

top
∗ Cette recherche a été partiellement subventionnée, en ce qui concerne le premier et le dernier auteur, par la bourse OTAN CRG 960360 et pour le second auteur par l’Action Intégrée 95/0849 entre les universités de Marrakech, Rabat et Montpellier.The primary goal of this paper is to shed some light on the maximality of the pointwise sum of two maximal monotone operators. The interesting purpose is to extend some recent results of Attouch, Moudafi and Riahi on the graph-convergence of maximal monotone operators to the more general setting of reflexive Banach spaces. In addition, we present some conditions which imply the uniform Brézis-Crandall-Pazy condition. Afterwards, we present, as a consequence, some recent conditions which ensure the Mosco-epiconvergence of the sum of convex proper lower semicontinuous functions.

How to cite

top

Attouch, H., Riahi, H., and Théra, M.. "Somme Ponctuelle D'operateurs Maximaux Monotones Pointwise Sum of two Maximal Monotone Operators." Serdica Mathematical Journal 22.3 (1996): 267-292. <http://eudml.org/doc/11637>.

@article{Attouch1996,
abstract = {∗ Cette recherche a été partiellement subventionnée, en ce qui concerne le premier et le dernier auteur, par la bourse OTAN CRG 960360 et pour le second auteur par l’Action Intégrée 95/0849 entre les universités de Marrakech, Rabat et Montpellier.The primary goal of this paper is to shed some light on the maximality of the pointwise sum of two maximal monotone operators. The interesting purpose is to extend some recent results of Attouch, Moudafi and Riahi on the graph-convergence of maximal monotone operators to the more general setting of reflexive Banach spaces. In addition, we present some conditions which imply the uniform Brézis-Crandall-Pazy condition. Afterwards, we present, as a consequence, some recent conditions which ensure the Mosco-epiconvergence of the sum of convex proper lower semicontinuous functions.},
author = {Attouch, H., Riahi, H., Théra, M.},
journal = {Serdica Mathematical Journal},
keywords = {Opérateur Maximal Monotone; Convergence Au Sens Des Graphes; Convergence Au Sens De Mosco; Condition De Brézis-crandall and Pazy; maximality of the pointwise sum; maximal monotone operators; graph convergence; reflexive Banach spaces; uniform Brézis-Crandall-Pazy condition; Mosco-epiconvergence; sum of convex proper lower semicontinuous functions},
language = {fre},
number = {3},
pages = {267-292},
publisher = {Institute of Mathematics and Informatics Bulgarian Academy of Sciences},
title = {Somme Ponctuelle D'operateurs Maximaux Monotones Pointwise Sum of two Maximal Monotone Operators},
url = {http://eudml.org/doc/11637},
volume = {22},
year = {1996},
}

TY - JOUR
AU - Attouch, H.
AU - Riahi, H.
AU - Théra, M.
TI - Somme Ponctuelle D'operateurs Maximaux Monotones Pointwise Sum of two Maximal Monotone Operators
JO - Serdica Mathematical Journal
PY - 1996
PB - Institute of Mathematics and Informatics Bulgarian Academy of Sciences
VL - 22
IS - 3
SP - 267
EP - 292
AB - ∗ Cette recherche a été partiellement subventionnée, en ce qui concerne le premier et le dernier auteur, par la bourse OTAN CRG 960360 et pour le second auteur par l’Action Intégrée 95/0849 entre les universités de Marrakech, Rabat et Montpellier.The primary goal of this paper is to shed some light on the maximality of the pointwise sum of two maximal monotone operators. The interesting purpose is to extend some recent results of Attouch, Moudafi and Riahi on the graph-convergence of maximal monotone operators to the more general setting of reflexive Banach spaces. In addition, we present some conditions which imply the uniform Brézis-Crandall-Pazy condition. Afterwards, we present, as a consequence, some recent conditions which ensure the Mosco-epiconvergence of the sum of convex proper lower semicontinuous functions.
LA - fre
KW - Opérateur Maximal Monotone; Convergence Au Sens Des Graphes; Convergence Au Sens De Mosco; Condition De Brézis-crandall and Pazy; maximality of the pointwise sum; maximal monotone operators; graph convergence; reflexive Banach spaces; uniform Brézis-Crandall-Pazy condition; Mosco-epiconvergence; sum of convex proper lower semicontinuous functions
UR - http://eudml.org/doc/11637
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.