Energy Critical nonlinear Schrödinger equations in the presence of periodic geodesics
- [1] Mathematisches Institut, Universität Bonn, Endenicher Allee 60, 53115 Bonn, Germany
Journées Équations aux dérivées partielles (2010)
- page 1-10
- ISSN: 0752-0360
Access Full Article
topAbstract
topHow to cite
topReferences
top- Vasily M. Babič, Eigenfunctions which are concentrated in the neighborhood of a closed geodesic, Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 9 (1968), 15–63. Zbl0207.11001MR242424
- Jean-Marc Bouclet and Nikolay Tzvetkov, Strichartz estimates for long range perturbations, Amer. J. Math. 129 (2007), no. 6, 1565–1609. Zbl1154.35077MR2369889
- Jean Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. I. Schrödinger equations, Geom. Funct. Anal. 3 (1993), no. 2, 107–156. Zbl0787.35097MR1209299
- —, On Strichartz’s inequalities and the nonlinear Schrödinger equation on irrational tori, Mathematical aspects of nonlinear dispersive equations, Ann. of Math. Stud., vol. 163, Princeton Univ. Press, Princeton, NJ, 2007, pp. 1–20. Zbl1169.35054
- Nicolas Burq, Patrick Gérard, and Nikolay Tzvetkov, Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds, Amer. J. Math. 126 (2004), no. 3, 569–605. Zbl1067.58027MR2058384
- —, Bilinear eigenfunction estimates and the nonlinear Schrödinger equation on surfaces, Invent. Math. 159 (2005), no. 1, 187–223. Zbl1092.35099MR2142336
- —, Multilinear eigenfunction estimates and global existence for the three dimensional nonlinear Schrödinger equations, Ann. Sci. École Norm. Sup. (4) 38 (2005), no. 2, 255–301. Zbl1116.35109MR2144988
- —, Global solutions for the nonlinear Schrödinger equation on three-dimensional compact manifolds, Mathematical aspects of nonlinear dispersive equations, Ann. of Math. Stud., vol. 163, Princeton Univ. Press, Princeton, NJ, 2007, pp. 111–129. Zbl1180.35475MR2333209
- Thierry Cazenave and Fred B. Weissler, The Cauchy problem for the critical nonlinear Schrödinger equation in , Nonlinear Anal. 14 (1990), no. 10, 807–836. Zbl0706.35127MR1055532
- Hans Christianson, Cutoff resolvent estimates and the semilinear Schrödinger equation, Proc. Amer. Math. Soc. 136 (2008), no. 10, 3513–3520. Zbl1156.35085MR2415035
- James Colliander, Markus Keel, Gigliola Staffilani, Hideo Takaoka, and Terence C. Tao, Global well-posedness and scattering for the energy-critical nonlinear Schrödinger equation in , Ann. of Math. (2) 167 (2008), no. 3, 767–865. Zbl1178.35345MR2415387
- Jean Ginibre, Le problème de Cauchy pour des EDP semi-linéaires périodiques en variables d’espace [d’après Bourgain]., Séminaire Bourbaki. Volume 1994/95. Exposés 790-804, Société Mathématique de France. Paris: Astérisque. 237, Exp. No.796, 1996, (French), pp. 163–187. Zbl0870.35096MR1423623
- Martin Hadac, Sebastian Herr, and Herbert Koch, Well-posedness and scattering for the KP-II equation in a critical space, Ann. Inst. H. Poincaré – AN 26 (2009), no. 3, 917–941, Erratum published at http://dx.doi.org/10.1016/j.anihpc.2010.01.006. Zbl1188.35162MR2526409
- Sebastian Herr, Daniel Tataru, and Nikolay Tzvetkov, Strichartz estimates for partially periodic solutions to Schrödinger equations in and applications, (in preparation). Zbl1293.35299
- —, Global well-posedness of the energy critical Nonlinear Schrödinger equation with small initial data in , arXiv:1005.2832 [math.AP], 2010.
- Markus Keel and Terence Tao, Endpoint Strichartz estimates, Amer. J. Math. 120 (1998), no. 5, 955–980. Zbl0922.35028MR1646048
- Herbert Koch and Daniel Tataru, Dispersive estimates for principally normal pseudodifferential operators, Comm. Pure Appl. Math. 58 (2005), no. 2, 217–284. Zbl1078.35143MR2094851
- —, A priori bounds for the 1D cubic NLS in negative Sobolev spaces, Int. Math. Res. Not. IMRN 2007 (2007), no. 16, Art. ID rnm053, 36p. Zbl1169.35055MR2353092
- Edmund Landau, Über Gitterpunkte in mehrdimensionalen Ellipsoiden, Math. Z. 21 (1924), no. 1, 126–132. MR1544690
- Jeremy Marzuola, Jason Metcalfe, and Daniel Tataru, Strichartz estimates and local smoothing estimates for asymptotically flat Schrödinger equations., J. Funct. Anal. 255 (2008), no. 6, 1497–1553. Zbl1180.35187MR2565717
- M. F. Pyškina, The asymptotic behavior of eigenfunctions of the Helmholtz equation that are concentrated near a closed geodesic, Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 15 (1969), 154–160. Zbl0249.35015MR294886
- James V. Ralston, On the construction of quasimodes associated with stable periodic orbits, Comm. Math. Phys. 51 (1976), no. 3, 219–242. Zbl0333.35066MR426057
- —, Approximate eigenfunctions of the Laplacian, J. Differential Geometry 12 (1977), no. 1, 87–100. Zbl0385.58012MR470998
- Luc Robbiano and Claude Zuily, Strichartz estimates for Schrödinger equations with variable coefficients, Mém. Soc. Math. Fr. (N.S.) (2005), no. 101-102, vi+208. Zbl1097.35002MR2193021
- Gigliola Staffilani and Daniel Tataru, Strichartz estimates for a Schrödinger operator with nonsmooth coefficients, Comm. Partial Differential Equations 27 (2002), no. 7-8, 1337–1372. Zbl1010.35015MR1924470
- Hideo Takaoka and Nikolay Tzvetkov, On 2D nonlinear Schrödinger equations with data on , J. Funct. Anal. 182 (2001), no. 2, 427–442. Zbl0976.35085MR1828800
- Laurent Thomann, The WKB method and geometric instability for nonlinear Schrödinger equations on surfaces, Bull. Soc. Math. France 136 (2008), no. 2, 167–193. Zbl1161.35050MR2415340