Energy Critical nonlinear Schrödinger equations in the presence of periodic geodesics

Sebastian Herr[1]

  • [1] Mathematisches Institut, Universität Bonn, Endenicher Allee 60, 53115 Bonn, Germany

Journées Équations aux dérivées partielles (2010)

  • page 1-10
  • ISSN: 0752-0360

Abstract

top
This is a report on recent progress concerning the global well-posedness problem for energy-critical nonlinear Schrödinger equations posed on specific Riemannian manifolds M with small initial data in H 1 ( M ) . The results include small data GWP for the quintic NLS in the case of the 3 d flat rational torus M = 𝕋 3 and small data GWP for the corresponding cubic NLS in the cases M = 2 × 𝕋 2 and M = 3 × 𝕋 . The main ingredients are bi-linear and tri-linear refinements of Strichartz estimates which obey the critical scaling, as well as critical function space theory. All results mentioned above have been obtained in collaboration with D. Tataru and N. Tzvetkov.

How to cite

top

Herr, Sebastian. "Energy Critical nonlinear Schrödinger equations in the presence of periodic geodesics." Journées Équations aux dérivées partielles (2010): 1-10. <http://eudml.org/doc/116376>.

@article{Herr2010,
abstract = {This is a report on recent progress concerning the global well-posedness problem for energy-critical nonlinear Schrödinger equations posed on specific Riemannian manifolds $M$ with small initial data in $H^1(M)$. The results include small data GWP for the quintic NLS in the case of the $3d$ flat rational torus $M=\mathbb\{T\}^3$ and small data GWP for the corresponding cubic NLS in the cases $M=\{\mathbb\{R\}\}^2\times \mathbb\{T\}^2$ and $M=\{\mathbb\{R\}\}^3\times \mathbb\{T\}$. The main ingredients are bi-linear and tri-linear refinements of Strichartz estimates which obey the critical scaling, as well as critical function space theory. All results mentioned above have been obtained in collaboration with D. Tataru and N. Tzvetkov.},
affiliation = {Mathematisches Institut, Universität Bonn, Endenicher Allee 60, 53115 Bonn, Germany},
author = {Herr, Sebastian},
journal = {Journées Équations aux dérivées partielles},
keywords = {energy critical nonlinear Schrödinger equations; global well-posedness; critical function spaces; Strichartz estimates},
language = {eng},
month = {6},
pages = {1-10},
publisher = {Groupement de recherche 2434 du CNRS},
title = {Energy Critical nonlinear Schrödinger equations in the presence of periodic geodesics},
url = {http://eudml.org/doc/116376},
year = {2010},
}

TY - JOUR
AU - Herr, Sebastian
TI - Energy Critical nonlinear Schrödinger equations in the presence of periodic geodesics
JO - Journées Équations aux dérivées partielles
DA - 2010/6//
PB - Groupement de recherche 2434 du CNRS
SP - 1
EP - 10
AB - This is a report on recent progress concerning the global well-posedness problem for energy-critical nonlinear Schrödinger equations posed on specific Riemannian manifolds $M$ with small initial data in $H^1(M)$. The results include small data GWP for the quintic NLS in the case of the $3d$ flat rational torus $M=\mathbb{T}^3$ and small data GWP for the corresponding cubic NLS in the cases $M={\mathbb{R}}^2\times \mathbb{T}^2$ and $M={\mathbb{R}}^3\times \mathbb{T}$. The main ingredients are bi-linear and tri-linear refinements of Strichartz estimates which obey the critical scaling, as well as critical function space theory. All results mentioned above have been obtained in collaboration with D. Tataru and N. Tzvetkov.
LA - eng
KW - energy critical nonlinear Schrödinger equations; global well-posedness; critical function spaces; Strichartz estimates
UR - http://eudml.org/doc/116376
ER -

References

top
  1. Vasily M. Babič, Eigenfunctions which are concentrated in the neighborhood of a closed geodesic, Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 9 (1968), 15–63. Zbl0207.11001MR242424
  2. Jean-Marc Bouclet and Nikolay Tzvetkov, Strichartz estimates for long range perturbations, Amer. J. Math. 129 (2007), no. 6, 1565–1609. Zbl1154.35077MR2369889
  3. Jean Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. I. Schrödinger equations, Geom. Funct. Anal. 3 (1993), no. 2, 107–156. Zbl0787.35097MR1209299
  4. —, On Strichartz’s inequalities and the nonlinear Schrödinger equation on irrational tori, Mathematical aspects of nonlinear dispersive equations, Ann. of Math. Stud., vol. 163, Princeton Univ. Press, Princeton, NJ, 2007, pp. 1–20. Zbl1169.35054
  5. Nicolas Burq, Patrick Gérard, and Nikolay Tzvetkov, Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds, Amer. J. Math. 126 (2004), no. 3, 569–605. Zbl1067.58027MR2058384
  6. —, Bilinear eigenfunction estimates and the nonlinear Schrödinger equation on surfaces, Invent. Math. 159 (2005), no. 1, 187–223. Zbl1092.35099MR2142336
  7. —, Multilinear eigenfunction estimates and global existence for the three dimensional nonlinear Schrödinger equations, Ann. Sci. École Norm. Sup. (4) 38 (2005), no. 2, 255–301. Zbl1116.35109MR2144988
  8. —, Global solutions for the nonlinear Schrödinger equation on three-dimensional compact manifolds, Mathematical aspects of nonlinear dispersive equations, Ann. of Math. Stud., vol. 163, Princeton Univ. Press, Princeton, NJ, 2007, pp. 111–129. Zbl1180.35475MR2333209
  9. Thierry Cazenave and Fred B. Weissler, The Cauchy problem for the critical nonlinear Schrödinger equation in H s , Nonlinear Anal. 14 (1990), no. 10, 807–836. Zbl0706.35127MR1055532
  10. Hans Christianson, Cutoff resolvent estimates and the semilinear Schrödinger equation, Proc. Amer. Math. Soc. 136 (2008), no. 10, 3513–3520. Zbl1156.35085MR2415035
  11. James Colliander, Markus Keel, Gigliola Staffilani, Hideo Takaoka, and Terence C. Tao, Global well-posedness and scattering for the energy-critical nonlinear Schrödinger equation in 3 , Ann. of Math. (2) 167 (2008), no. 3, 767–865. Zbl1178.35345MR2415387
  12. Jean Ginibre, Le problème de Cauchy pour des EDP semi-linéaires périodiques en variables d’espace [d’après Bourgain]., Séminaire Bourbaki. Volume 1994/95. Exposés 790-804, Société Mathématique de France. Paris: Astérisque. 237, Exp. No.796, 1996, (French), pp. 163–187. Zbl0870.35096MR1423623
  13. Martin Hadac, Sebastian Herr, and Herbert Koch, Well-posedness and scattering for the KP-II equation in a critical space, Ann. Inst. H. Poincaré – AN 26 (2009), no. 3, 917–941, Erratum published at http://dx.doi.org/10.1016/j.anihpc.2010.01.006. Zbl1188.35162MR2526409
  14. Sebastian Herr, Daniel Tataru, and Nikolay Tzvetkov, Strichartz estimates for partially periodic solutions to Schrödinger equations in 4 d and applications, (in preparation). Zbl1293.35299
  15. —, Global well-posedness of the energy critical Nonlinear Schrödinger equation with small initial data in H 1 ( 𝕋 3 ) , arXiv:1005.2832 [math.AP], 2010. 
  16. Markus Keel and Terence Tao, Endpoint Strichartz estimates, Amer. J. Math. 120 (1998), no. 5, 955–980. Zbl0922.35028MR1646048
  17. Herbert Koch and Daniel Tataru, Dispersive estimates for principally normal pseudodifferential operators, Comm. Pure Appl. Math. 58 (2005), no. 2, 217–284. Zbl1078.35143MR2094851
  18. —, A priori bounds for the 1D cubic NLS in negative Sobolev spaces, Int. Math. Res. Not. IMRN 2007 (2007), no. 16, Art. ID rnm053, 36p. Zbl1169.35055MR2353092
  19. Edmund Landau, Über Gitterpunkte in mehrdimensionalen Ellipsoiden, Math. Z. 21 (1924), no. 1, 126–132. MR1544690
  20. Jeremy Marzuola, Jason Metcalfe, and Daniel Tataru, Strichartz estimates and local smoothing estimates for asymptotically flat Schrödinger equations., J. Funct. Anal. 255 (2008), no. 6, 1497–1553. Zbl1180.35187MR2565717
  21. M. F. Pyškina, The asymptotic behavior of eigenfunctions of the Helmholtz equation that are concentrated near a closed geodesic, Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 15 (1969), 154–160. Zbl0249.35015MR294886
  22. James V. Ralston, On the construction of quasimodes associated with stable periodic orbits, Comm. Math. Phys. 51 (1976), no. 3, 219–242. Zbl0333.35066MR426057
  23. —, Approximate eigenfunctions of the Laplacian, J. Differential Geometry 12 (1977), no. 1, 87–100. Zbl0385.58012MR470998
  24. Luc Robbiano and Claude Zuily, Strichartz estimates for Schrödinger equations with variable coefficients, Mém. Soc. Math. Fr. (N.S.) (2005), no. 101-102, vi+208. Zbl1097.35002MR2193021
  25. Gigliola Staffilani and Daniel Tataru, Strichartz estimates for a Schrödinger operator with nonsmooth coefficients, Comm. Partial Differential Equations 27 (2002), no. 7-8, 1337–1372. Zbl1010.35015MR1924470
  26. Hideo Takaoka and Nikolay Tzvetkov, On 2D nonlinear Schrödinger equations with data on × 𝕋 , J. Funct. Anal. 182 (2001), no. 2, 427–442. Zbl0976.35085MR1828800
  27. Laurent Thomann, The WKB method and geometric instability for nonlinear Schrödinger equations on surfaces, Bull. Soc. Math. France 136 (2008), no. 2, 167–193. Zbl1161.35050MR2415340

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.