The WKB method and geometric instability for nonlinear Schrödinger equations on surfaces
Bulletin de la Société Mathématique de France (2008)
- Volume: 136, Issue: 2, page 167-193
- ISSN: 0037-9484
Access Full Article
topAbstract
topHow to cite
topThomann, Laurent. "The WKB method and geometric instability for nonlinear Schrödinger equations on surfaces." Bulletin de la Société Mathématique de France 136.2 (2008): 167-193. <http://eudml.org/doc/272410>.
@article{Thomann2008,
abstract = {In this paper we are interested in constructing WKB approximations for the nonlinear cubic Schrödinger equation on a Riemannian surface which has a stable geodesic. These approximate solutions will lead to some instability properties of the equation.},
author = {Thomann, Laurent},
journal = {Bulletin de la Société Mathématique de France},
keywords = {nonlinear schrödinger equation; instability; quasimode},
language = {eng},
number = {2},
pages = {167-193},
publisher = {Société mathématique de France},
title = {The WKB method and geometric instability for nonlinear Schrödinger equations on surfaces},
url = {http://eudml.org/doc/272410},
volume = {136},
year = {2008},
}
TY - JOUR
AU - Thomann, Laurent
TI - The WKB method and geometric instability for nonlinear Schrödinger equations on surfaces
JO - Bulletin de la Société Mathématique de France
PY - 2008
PB - Société mathématique de France
VL - 136
IS - 2
SP - 167
EP - 193
AB - In this paper we are interested in constructing WKB approximations for the nonlinear cubic Schrödinger equation on a Riemannian surface which has a stable geodesic. These approximate solutions will lead to some instability properties of the equation.
LA - eng
KW - nonlinear schrödinger equation; instability; quasimode
UR - http://eudml.org/doc/272410
ER -
References
top- [1] S. Alinhac & P. Gérard – Opérateurs pseudo-différentiels et théorème de Nash-Moser, Savoirs Actuels, InterÉditions, Paris, 1991. Zbl0791.47044
- [2] V. Banica – « On the nonlinear Schrödinger dynamics on », J. Math. Pures Appl. (9) 83 (2004), p. 77–98. Zbl1084.35082MR2032582
- [3] J. Bourgain – « Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. I. Schrödinger equations », Geom. Funct. Anal.3 (1993), p. 107–156. Zbl0787.35097MR1209299
- [4] N. Burq, P. Gérad & N. Tzvetkov – « An instability property of the nonlinear Schrödinger equation on », Math. Res. Lett.9 (2002), p. 323–335. Zbl1003.35113MR1909648
- [5] N. Burq, P. Gérard & N. Tzvetkov – « Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds », Amer. J. Math.126 (2004), p. 569–605. Zbl1067.58027MR2058384
- [6] —, « Agmon estimates and nonlinear instability for Schrödinger equations », preprint, 2005.
- [7] R. Carles – « Remarks on the Cauchy problem for nonlinear Schrödinger equations with potential », preprint arXiv:math.AP/0609391.
- [8] —, « Geometric optics and instability for semi-classical Schrödinger equations », Arch. Ration. Mech. Anal.183 (2007), p. 525–553. Zbl1134.35098MR2278414
- [9] M. Christ, J. Colliander & T. Tao – « Ill-posedness for nonlinear Schrödinger and wave equation », to appear in Annales IHP. Zbl1048.35101
- [10] —, « Asymptotics, frequency modulation, and low regularity ill-posedness for canonical defocusing equations », Amer. J. Math.125 (2003), p. 1235–1293. Zbl1048.35101MR2018661
- [11] M. Combescure – « The quantum stability problem for some class of time-dependent Hamiltonians », Ann. Physics185 (1988), p. 86–110. Zbl0655.35076MR954669
- [12] B. Helffer – Semi-classical analysis for the Schrödinger operator and applications, Lecture Notes in Mathematics, vol. 1336, Springer, 1988. Zbl0647.35002MR960278
- [13] W. Klingenberg – Riemannian geometry, de Gruyter Studies in Mathematics, vol. 1, Walter de Gruyter & Co., 1982. Zbl0495.53036MR666697
- [14] L. Perko – Differential equations and dynamical systems, Texts in Applied Mathematics, vol. 7, Springer, 1991. Zbl0717.34001MR1083151
- [15] J. V. Ralston – « Approximate eigenfunctions of the Laplacian », J. Differential Geometry12 (1977), p. 87–100. Zbl0385.58012MR470998
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.