# The WKB method and geometric instability for nonlinear Schrödinger equations on surfaces

Bulletin de la Société Mathématique de France (2008)

- Volume: 136, Issue: 2, page 167-193
- ISSN: 0037-9484

## Access Full Article

top## Abstract

top## How to cite

topThomann, Laurent. "The WKB method and geometric instability for nonlinear Schrödinger equations on surfaces." Bulletin de la Société Mathématique de France 136.2 (2008): 167-193. <http://eudml.org/doc/272410>.

@article{Thomann2008,

abstract = {In this paper we are interested in constructing WKB approximations for the nonlinear cubic Schrödinger equation on a Riemannian surface which has a stable geodesic. These approximate solutions will lead to some instability properties of the equation.},

author = {Thomann, Laurent},

journal = {Bulletin de la Société Mathématique de France},

keywords = {nonlinear schrödinger equation; instability; quasimode},

language = {eng},

number = {2},

pages = {167-193},

publisher = {Société mathématique de France},

title = {The WKB method and geometric instability for nonlinear Schrödinger equations on surfaces},

url = {http://eudml.org/doc/272410},

volume = {136},

year = {2008},

}

TY - JOUR

AU - Thomann, Laurent

TI - The WKB method and geometric instability for nonlinear Schrödinger equations on surfaces

JO - Bulletin de la Société Mathématique de France

PY - 2008

PB - Société mathématique de France

VL - 136

IS - 2

SP - 167

EP - 193

AB - In this paper we are interested in constructing WKB approximations for the nonlinear cubic Schrödinger equation on a Riemannian surface which has a stable geodesic. These approximate solutions will lead to some instability properties of the equation.

LA - eng

KW - nonlinear schrödinger equation; instability; quasimode

UR - http://eudml.org/doc/272410

ER -

## References

top- [1] S. Alinhac & P. Gérard – Opérateurs pseudo-différentiels et théorème de Nash-Moser, Savoirs Actuels, InterÉditions, Paris, 1991. Zbl0791.47044
- [2] V. Banica – « On the nonlinear Schrödinger dynamics on ${\mathbb{S}}^{2}$ », J. Math. Pures Appl. (9) 83 (2004), p. 77–98. Zbl1084.35082MR2032582
- [3] J. Bourgain – « Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. I. Schrödinger equations », Geom. Funct. Anal.3 (1993), p. 107–156. Zbl0787.35097MR1209299
- [4] N. Burq, P. Gérad & N. Tzvetkov – « An instability property of the nonlinear Schrödinger equation on ${S}^{d}$ », Math. Res. Lett.9 (2002), p. 323–335. Zbl1003.35113MR1909648
- [5] N. Burq, P. Gérard & N. Tzvetkov – « Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds », Amer. J. Math.126 (2004), p. 569–605. Zbl1067.58027MR2058384
- [6] —, « Agmon estimates and nonlinear instability for Schrödinger equations », preprint, 2005.
- [7] R. Carles – « Remarks on the Cauchy problem for nonlinear Schrödinger equations with potential », preprint arXiv:math.AP/0609391.
- [8] —, « Geometric optics and instability for semi-classical Schrödinger equations », Arch. Ration. Mech. Anal.183 (2007), p. 525–553. Zbl1134.35098MR2278414
- [9] M. Christ, J. Colliander & T. Tao – « Ill-posedness for nonlinear Schrödinger and wave equation », to appear in Annales IHP. Zbl1048.35101
- [10] —, « Asymptotics, frequency modulation, and low regularity ill-posedness for canonical defocusing equations », Amer. J. Math.125 (2003), p. 1235–1293. Zbl1048.35101MR2018661
- [11] M. Combescure – « The quantum stability problem for some class of time-dependent Hamiltonians », Ann. Physics185 (1988), p. 86–110. Zbl0655.35076MR954669
- [12] B. Helffer – Semi-classical analysis for the Schrödinger operator and applications, Lecture Notes in Mathematics, vol. 1336, Springer, 1988. Zbl0647.35002MR960278
- [13] W. Klingenberg – Riemannian geometry, de Gruyter Studies in Mathematics, vol. 1, Walter de Gruyter & Co., 1982. Zbl0495.53036MR666697
- [14] L. Perko – Differential equations and dynamical systems, Texts in Applied Mathematics, vol. 7, Springer, 1991. Zbl0717.34001MR1083151
- [15] J. V. Ralston – « Approximate eigenfunctions of the Laplacian », J. Differential Geometry12 (1977), p. 87–100. Zbl0385.58012MR470998

## Citations in EuDML Documents

top## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.