Profile decompositions and applications to Navier-Stokes

Gabriel S. Koch[1]

  • [1] Department of Mathematics University of Oxford Oxford, UK

Journées Équations aux dérivées partielles (2010)

  • page 1-13
  • ISSN: 0752-0360

Abstract

top
In this expository note, we collect some recent results concerning the applications of methods from dispersive and hyperbolic equations to the study of regularity criteria for the Navier-Stokes equations. In particular, these methods have recently been used to give an alternative approach to the L 3 , Navier-Stokes regularity criterion of Escauriaza, Seregin and Šverák. The key tools are profile decompositions for bounded sequences of functions in critical spaces.

How to cite

top

Koch, Gabriel S.. "Profile decompositions and applications to Navier-Stokes." Journées Équations aux dérivées partielles (2010): 1-13. <http://eudml.org/doc/116378>.

@article{Koch2010,
abstract = {In this expository note, we collect some recent results concerning the applications of methods from dispersive and hyperbolic equations to the study of regularity criteria for the Navier-Stokes equations. In particular, these methods have recently been used to give an alternative approach to the $L_\{3,\infty \}$ Navier-Stokes regularity criterion of Escauriaza, Seregin and Šverák. The key tools are profile decompositions for bounded sequences of functions in critical spaces.},
affiliation = {Department of Mathematics University of Oxford Oxford, UK},
author = {Koch, Gabriel S.},
journal = {Journées Équations aux dérivées partielles},
language = {eng},
month = {6},
pages = {1-13},
publisher = {Groupement de recherche 2434 du CNRS},
title = {Profile decompositions and applications to Navier-Stokes},
url = {http://eudml.org/doc/116378},
year = {2010},
}

TY - JOUR
AU - Koch, Gabriel S.
TI - Profile decompositions and applications to Navier-Stokes
JO - Journées Équations aux dérivées partielles
DA - 2010/6//
PB - Groupement de recherche 2434 du CNRS
SP - 1
EP - 13
AB - In this expository note, we collect some recent results concerning the applications of methods from dispersive and hyperbolic equations to the study of regularity criteria for the Navier-Stokes equations. In particular, these methods have recently been used to give an alternative approach to the $L_{3,\infty }$ Navier-Stokes regularity criterion of Escauriaza, Seregin and Šverák. The key tools are profile decompositions for bounded sequences of functions in critical spaces.
LA - eng
UR - http://eudml.org/doc/116378
ER -

References

top
  1. Hajer Bahouri, Albert Cohen, and Gabriel Koch. A general construction method for profile decompositions. in progress. Zbl1231.42034
  2. Hajer Bahouri and Patrick Gérard. High frequency approximation of solutions to critical nonlinear wave equations. Amer. J. Math., 121(1):131–175, 1999. Zbl0919.35089MR1705001
  3. H. Brezis and J.-M. Coron. Convergence of solutions of H -systems or how to blow bubbles. Arch. Rational Mech. Anal., 89(1):21–56, 1985. Zbl0584.49024MR784102
  4. L. Caffarelli, R. Kohn, and L. Nirenberg. Partial regularity of suitable weak solutions of the Navier-Stokes equations. Comm. Pure Appl. Math., 35(6):771–831, 1982. Zbl0509.35067MR673830
  5. L. Escauriaza, G. A. Seregin, and V. Šverák. L 3 , -solutions of Navier-Stokes equations and backward uniqueness. Uspekhi Mat. Nauk, 58(2(350)):3–44, 2003. Zbl1064.35134MR1992563
  6. Isabelle Gallagher. Profile decomposition for solutions of the Navier-Stokes equations. Bull. Soc. Math. France, 129(2):285–316, 2001. Zbl0987.35120MR1871299
  7. Isabelle Gallagher, Dragoş Iftimie, and Fabrice Planchon. Non-explosion en temps grand et stabilité de solutions globales des équations de Navier-Stokes. C. R. Math. Acad. Sci. Paris, 334(4):289–292, 2002. Zbl0997.35051MR1891005
  8. Isabelle Gallagher, Dragoş Iftimie, and Fabrice Planchon. Asymptotics and stability for global solutions to the Navier-Stokes equations. Ann. Inst. Fourier (Grenoble), 53(5):1387–1424, 2003. Zbl1038.35054MR2032938
  9. Isabelle Gallagher, Gabriel Koch, and Fabrice Planchon. A profile decomposition approach to the L t ( L x 3 ) Navier-Stokes regularity criterion. arXiv:1012.0145. Zbl1291.35180
  10. Patrick Gérard. Description du défaut de compacité de l’injection de Sobolev. ESAIM Control Optim. Calc. Var., 3:213–233 (electronic), 1998. Zbl0907.46027MR1632171
  11. Stéphane Jaffard. Analysis of the lack of compactness in the critical Sobolev embeddings. J. Funct. Anal., 161(2):384–396, 1999. Zbl0922.46030MR1674639
  12. Carlos Kenig and Gabriel Koch. An alternative approach to the Navier-Stokes equations in critical spaces. to appear in Annales de l’Institut Henri Poincaré (C) Analyse Non Linéaire (preprint: arXiv:0908.3349). Zbl1220.35119
  13. Carlos E. Kenig and Frank Merle. Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case. Invent. Math., 166(3):645–675, 2006. Zbl1115.35125MR2257393
  14. Carlos E. Kenig and Frank Merle. Global well-posedness, scattering and blow-up for the energy-critical focusing non-linear wave equation. Acta Math., 201(2):147–212, 2008. Zbl1183.35202MR2461508
  15. Carlos E. Kenig and Frank Merle. Scattering for H 1 / 2 bounded solutions to the cubic, defocusing NLS in 3 dimensions. Trans. Amer. Math. Soc., 362(4):1937–1962, 2010. Zbl1188.35180MR2574882
  16. Sahbi Keraani. On the blow up phenomenon of the critical nonlinear Schrödinger equation. J. Funct. Anal., 235(1):171–192, 2006. Zbl1099.35132MR2216444
  17. Gabriel Koch. Profile decompositions for critical Lebesgue and Besov space embeddings. arXiv:1006.3064. Zbl1230.46030
  18. O. A. Ladyženskaja. Uniqueness and smoothness of generalized solutions of Navier-Stokes equations. Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 5:169–185, 1967. Zbl0194.12805MR236541
  19. J. Leray. Sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Math., 63:193–248, 1934. MR1555394
  20. P.-L. Lions. The concentration-compactness principle in the calculus of variations. The limit case. I. Rev. Mat. Iberoamericana, 1(1):145–201, 1985. Zbl0704.49005MR834360
  21. J. Nečas, M. Růžička, and V. Šverák. On Leray’s self-similar solutions of the Navier-Stokes equations. Acta Math., 176(2):283–294, 1996. Zbl0884.35115
  22. Giovanni Prodi. Un teorema di unicità per le equazioni di Navier-Stokes. Ann. Mat. Pura Appl. (4), 48:173–182, 1959. Zbl0148.08202MR126088
  23. James Serrin. The initial value problem for the Navier-Stokes equations. In Nonlinear Problems (Proc. Sympos., Madison, Wis, pages 69–98. Univ. of Wisconsin Press, Madison, Wis., 1963. Zbl0115.08502MR150444
  24. Sergio Solimini. A note on compactness-type properties with respect to Lorentz norms of bounded subsets of a Sobolev space. Ann. Inst. H. Poincaré Anal. Non Linéaire, 12(3):319–337, 1995. Zbl0837.46025MR1340267
  25. V. Šverák and W. Rusin. Minimal initial data for potential Navier-Stokes singularities. arXiv:0911.0500, 2009. Zbl1206.35199

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.