Profile decompositions and applications to Navier-Stokes
- [1] Department of Mathematics University of Oxford Oxford, UK
Journées Équations aux dérivées partielles (2010)
- page 1-13
- ISSN: 0752-0360
Access Full Article
topAbstract
topHow to cite
topKoch, Gabriel S.. "Profile decompositions and applications to Navier-Stokes." Journées Équations aux dérivées partielles (2010): 1-13. <http://eudml.org/doc/116378>.
@article{Koch2010,
abstract = {In this expository note, we collect some recent results concerning the applications of methods from dispersive and hyperbolic equations to the study of regularity criteria for the Navier-Stokes equations. In particular, these methods have recently been used to give an alternative approach to the $L_\{3,\infty \}$ Navier-Stokes regularity criterion of Escauriaza, Seregin and Šverák. The key tools are profile decompositions for bounded sequences of functions in critical spaces.},
affiliation = {Department of Mathematics University of Oxford Oxford, UK},
author = {Koch, Gabriel S.},
journal = {Journées Équations aux dérivées partielles},
language = {eng},
month = {6},
pages = {1-13},
publisher = {Groupement de recherche 2434 du CNRS},
title = {Profile decompositions and applications to Navier-Stokes},
url = {http://eudml.org/doc/116378},
year = {2010},
}
TY - JOUR
AU - Koch, Gabriel S.
TI - Profile decompositions and applications to Navier-Stokes
JO - Journées Équations aux dérivées partielles
DA - 2010/6//
PB - Groupement de recherche 2434 du CNRS
SP - 1
EP - 13
AB - In this expository note, we collect some recent results concerning the applications of methods from dispersive and hyperbolic equations to the study of regularity criteria for the Navier-Stokes equations. In particular, these methods have recently been used to give an alternative approach to the $L_{3,\infty }$ Navier-Stokes regularity criterion of Escauriaza, Seregin and Šverák. The key tools are profile decompositions for bounded sequences of functions in critical spaces.
LA - eng
UR - http://eudml.org/doc/116378
ER -
References
top- Hajer Bahouri, Albert Cohen, and Gabriel Koch. A general construction method for profile decompositions. in progress. Zbl1231.42034
- Hajer Bahouri and Patrick Gérard. High frequency approximation of solutions to critical nonlinear wave equations. Amer. J. Math., 121(1):131–175, 1999. Zbl0919.35089MR1705001
- H. Brezis and J.-M. Coron. Convergence of solutions of -systems or how to blow bubbles. Arch. Rational Mech. Anal., 89(1):21–56, 1985. Zbl0584.49024MR784102
- L. Caffarelli, R. Kohn, and L. Nirenberg. Partial regularity of suitable weak solutions of the Navier-Stokes equations. Comm. Pure Appl. Math., 35(6):771–831, 1982. Zbl0509.35067MR673830
- L. Escauriaza, G. A. Seregin, and V. Šverák. -solutions of Navier-Stokes equations and backward uniqueness. Uspekhi Mat. Nauk, 58(2(350)):3–44, 2003. Zbl1064.35134MR1992563
- Isabelle Gallagher. Profile decomposition for solutions of the Navier-Stokes equations. Bull. Soc. Math. France, 129(2):285–316, 2001. Zbl0987.35120MR1871299
- Isabelle Gallagher, Dragoş Iftimie, and Fabrice Planchon. Non-explosion en temps grand et stabilité de solutions globales des équations de Navier-Stokes. C. R. Math. Acad. Sci. Paris, 334(4):289–292, 2002. Zbl0997.35051MR1891005
- Isabelle Gallagher, Dragoş Iftimie, and Fabrice Planchon. Asymptotics and stability for global solutions to the Navier-Stokes equations. Ann. Inst. Fourier (Grenoble), 53(5):1387–1424, 2003. Zbl1038.35054MR2032938
- Isabelle Gallagher, Gabriel Koch, and Fabrice Planchon. A profile decomposition approach to the Navier-Stokes regularity criterion. arXiv:1012.0145. Zbl1291.35180
- Patrick Gérard. Description du défaut de compacité de l’injection de Sobolev. ESAIM Control Optim. Calc. Var., 3:213–233 (electronic), 1998. Zbl0907.46027MR1632171
- Stéphane Jaffard. Analysis of the lack of compactness in the critical Sobolev embeddings. J. Funct. Anal., 161(2):384–396, 1999. Zbl0922.46030MR1674639
- Carlos Kenig and Gabriel Koch. An alternative approach to the Navier-Stokes equations in critical spaces. to appear in Annales de l’Institut Henri Poincaré (C) Analyse Non Linéaire (preprint: arXiv:0908.3349). Zbl1220.35119
- Carlos E. Kenig and Frank Merle. Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case. Invent. Math., 166(3):645–675, 2006. Zbl1115.35125MR2257393
- Carlos E. Kenig and Frank Merle. Global well-posedness, scattering and blow-up for the energy-critical focusing non-linear wave equation. Acta Math., 201(2):147–212, 2008. Zbl1183.35202MR2461508
- Carlos E. Kenig and Frank Merle. Scattering for bounded solutions to the cubic, defocusing NLS in 3 dimensions. Trans. Amer. Math. Soc., 362(4):1937–1962, 2010. Zbl1188.35180MR2574882
- Sahbi Keraani. On the blow up phenomenon of the critical nonlinear Schrödinger equation. J. Funct. Anal., 235(1):171–192, 2006. Zbl1099.35132MR2216444
- Gabriel Koch. Profile decompositions for critical Lebesgue and Besov space embeddings. arXiv:1006.3064. Zbl1230.46030
- O. A. Ladyženskaja. Uniqueness and smoothness of generalized solutions of Navier-Stokes equations. Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 5:169–185, 1967. Zbl0194.12805MR236541
- J. Leray. Sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Math., 63:193–248, 1934. MR1555394
- P.-L. Lions. The concentration-compactness principle in the calculus of variations. The limit case. I. Rev. Mat. Iberoamericana, 1(1):145–201, 1985. Zbl0704.49005MR834360
- J. Nečas, M. Růžička, and V. Šverák. On Leray’s self-similar solutions of the Navier-Stokes equations. Acta Math., 176(2):283–294, 1996. Zbl0884.35115
- Giovanni Prodi. Un teorema di unicità per le equazioni di Navier-Stokes. Ann. Mat. Pura Appl. (4), 48:173–182, 1959. Zbl0148.08202MR126088
- James Serrin. The initial value problem for the Navier-Stokes equations. In Nonlinear Problems (Proc. Sympos., Madison, Wis, pages 69–98. Univ. of Wisconsin Press, Madison, Wis., 1963. Zbl0115.08502MR150444
- Sergio Solimini. A note on compactness-type properties with respect to Lorentz norms of bounded subsets of a Sobolev space. Ann. Inst. H. Poincaré Anal. Non Linéaire, 12(3):319–337, 1995. Zbl0837.46025MR1340267
- V. Šverák and W. Rusin. Minimal initial data for potential Navier-Stokes singularities. arXiv:0911.0500, 2009. Zbl1206.35199
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.